Lecture Video Visual Objects (LVVO) Dataset: A Benchmark for Visual Object Detection in Educational Videos |
GitHub |
We introduce the Lecture Video Visual Objects (LVVO) dataset, a new benchmark for visual object detection in educational video content. The dataset consists of 4,000 frames extracted from 245 lecture videos spanning biology, computer science, and geosciences. A subset of 1,000 frames, referred to as LVVO_1k, has been manually annotated with bounding boxes for four visual categories: Table, Chart-Graph, Photographic-image, and Visual-illustration. Each frame was labeled independently by two annotators, resulting in an inter-annotator F1 score of 83.41%, indicating strong agreement. To ensure high-quality consensus annotations, a third expert reviewed and resolved all cases of disagreement through a conflict resolution process. To expand the dataset, a semi-supervised approach was employed to automatically annotate the remaining 3,000 frames, forming LVVO_3k. The complete dataset offers a valuable resource for developing and evaluating both supervised and semi-supervised methods for visual content detection in educational videos. The LVVO dataset is publicly available to support further research in this domain. |
|
DETRPose: Real-time end-to-end transformer model for multi-person pose estimation |
GitHub |
Multi-person pose estimation (MPPE) estimates keypoints for all individuals present in an image. MPPE is a fundamental task for several applications in computer vision and virtual reality. Unfortunately, there are currently no transformer-based models that can perform MPPE in real time. The paper presents a family of transformer-based models capable of performing multi-person 2D pose estimation in real-time. Our approach utilizes a modified decoder architecture and keypoint similarity metrics to generate both positive and negative queries, thereby enhancing the quality of the selected queries within the architecture. Compared to state-of-the-art models, our proposed models train much faster, using 5 to 10 times fewer epochs, with competitive inference times without requiring quantization libraries to speed up the model. Furthermore, our proposed models provide competitive results or outperform alternative models, often using significantly fewer parameters. |
|
Vine Copulas as Differentiable Computational Graphs |
GitHub |
Vine copulas are sophisticated models for multivariate distributions and are increasingly used in machine learning. To facilitate their integration into modern ML pipelines, we introduce the vine computational graph, a DAG that abstracts the multilevel vine structure and associated computations. On this foundation, we devise new algorithms for conditional sampling, efficient sampling-order scheduling, and constructing vine structures for customized conditioning variables. We implement these ideas in torchvinecopulib, a GPU-accelerated Python library built upon PyTorch, delivering improved scalability for fitting, sampling, and density evaluation. Our experiments illustrate how gradient flowing through the vine can improve Vine Copula Autoencoders and that incorporating vines for uncertainty quantification in deep learning can outperform MC-dropout, deep ensembles, and Bayesian Neural Networks in sharpness, calibration, and runtime. By recasting vine copula models as computational graphs, our work connects classical dependence modeling with modern deep-learning toolchains and facilitates the integration of state-of-the-art copula methods in modern machine learning pipelines. |
|
Vector Ontologies as an LLM world view extraction method |
GitHub |
Large Language Models (LLMs) possess intricate internal representations of the world, yet these latent structures are notoriously difficult to interpret or repurpose beyond the original prediction task. Building on our earlier work (Rothenfusser, 2025), which introduced the concept of vector ontologies as a framework for translating high-dimensional neural representations into interpretable geometric structures, this paper provides the first empirical validation of that approach. A vector ontology defines a domain-specific vector space spanned by ontologically meaningful dimensions, allowing geometric analysis of concepts and relationships within a domain. We construct an 8-dimensional vector ontology of musical genres based on Spotify audio features and test whether an LLM's internal world model of music can be consistently and accurately projected into this space. Using GPT-4o-mini, we extract genre representations through multiple natural language prompts and analyze the consistency of these projections across linguistic variations and their alignment with ground-truth data. Our results show (1) high spatial consistency of genre projections across 47 query formulations, (2) strong alignment between LLM-inferred genre locations and real-world audio feature distributions, and (3) evidence of a direct relationship between prompt phrasing and spatial shifts in the LLM's inferred vector ontology. These findings demonstrate that LLMs internalize structured, repurposable knowledge and that vector ontologies offer a promising method for extracting and analyzing this knowledge in a transparent and verifiable way. |
|
TCANet: A Temporal Convolutional Attention Network for Motor Imagery EEG Decoding |
GitHub |
Decoding motor imagery electroencephalogram (MI-EEG) signals is fundamental to the development of brain–computer interface (BCI) systems. However, robust decoding remains a challenge due to the inherent complexity and variability of MI-EEG signals. This study proposes the Temporal Convolutional Attention Network (TCANet), a novel end-to-end model that hierarchically captures spatiotemporal dependencies by progressively integrating local, fused, and global features. Specifically, TCANet employs a multi-scale convolutional module to extract local spatiotemporal representations across multiple temporal resolutions. A temporal convolutional module then fuses and compresses these multi-scale features while modeling both short- and long-term dependencies. Subsequently, a stacked multi-head self-attention mechanism refines the global representations, followed by a fully connected layer that performs MI-EEG classification. The proposed model was systematically evaluated on the BCI IV-2a and IV-2b datasets under both subject-dependent and subject-independent settings. In subject-dependent classification, TCANet achieved accuracies of 83.06% and 88.52% on BCI IV-2a and IV-2b respectively, with corresponding Kappa values of 0.7742 and 0.7703, outperforming multiple representative baselines. In the more challenging subject-independent setting, TCANet achieved competitive performance on IV-2a and demonstrated potential for improvement on IV-2b. The code is available at https://github.com/snailpt/TCANet. |
|
Focusing on Tracks for Online Multi-Object Tracking |
GitHub |
Multi-object tracking (MOT) is a critical task in computer vision, requiring the accurate identification and continuous tracking of multiple objects across video frames. However, current state-of-the-art methods mainly rely on a global optimization technique and multi-stage cascade association strategy, and those approaches often overlook the specific characteristics of assignment task in MOT and useful detection results that may represent occluded objects. To address these challenges, we propose a novel Track-Focused Online Multi-Object Tracker (TrackTrack) with two key strategies: Track-Perspective-Based Association (TPA) and Track-Aware Initialization (TAI). The TPA strategy associates each track with the most suitable detection result by choosing the one with the minimum distance from all available detection results in a track-perspective manner. On the other hand, the TAI method precludes the generation of spurious tracks in the track-aware aspect by suppressing track initialization of detection results that heavily overlap with current active tracks and more confident detection results. Extensive experiments on MOT17, MOT20, and DanceTrack demonstrate that our TrackTrack outperforms current state-of-the-art trackers, offering improved robustness and accuracy across diverse and challenging tracking scenarios. |
|
Automated Risk Management Mechanisms in DeFi Lending Protocols: A Crosschain Comparative Analysis of Aave and Compound |
GitHub |
Blockchain-based decentralised lending is a rapidly growing and evolving alternative to traditional lending, but it poses new risks. To mitigate these risks, lending protocols have integrated automated risk management tools into their smart contracts. However, the effectiveness of the latest risk management features introduced in the most recent versions of these lending protocols is understudied. To close this gap, we use a panel regression fixed effects model to empirically analyse the cross-version (v2 and v3) and cross-chain (L1 and L2) performance of the liquidation mechanisms of the two most popular lending protocols, Aave and Compound, during the period Jan 2021 to Dec 2024. Our analysis reveals that liquidation events in v3 of both protocols lead to an increase in total value locked and total revenue, with stronger impact on the L2 blockchain compared to L1. In contrast, liquidations in v2 have an insignificant impact, which indicates that the most recent v3 protocols have better risk management than the earlier v2 protocols. We also show that L1 blockchains are the preferred choice among large investors for their robust liquidity and ecosystem depth, while L2 blockchains are more popular among retail investors for their lower fees and faster execution. |
|
BeyondRPC: A Contrastive and Augmentation-Driven Framework for Robust Point Cloud Understanding |
GitHub |
Robust perception of 3D point clouds remains a significant challenge in real-world environments where sensor data is often corrupted. While recent models and augmentation strategies have improved robustness individually, their isolated use still limits performance under severe distortions. In this work, we introduce BeyondRPC, a contrastive and augmentation-driven framework for robust point cloud classification. Our approach combines AdaCrossNet for adaptive cross-modal contrastive pretraining with WOLFMix-based fine-tuning to improve generalization under corruption. Specifically, AdaCrossNet employs a dynamic weighting mechanism to balance intra- and cross-modal learning, while WOLFMix integrates both deformation-based and rigid-mix augmentations. Experiments on the ModelNet-C benchmark demonstrate that BeyondRPC achieves a mean Corruption Error of 0.455, outperforming state-of-the-art methods, including RPC, GDANet, and CurveNet, while maintaining high clean overall accuracy at 0.930. These results underscore the importance of joint contrastive representation learning and corruption- aware augmentation for robust 3D point cloud understanding. |
|
M^3-VOS: Multi-Phase, Multi-Transition, and Multi-Scenery Video Object Segmentation |
GitHub |
Intelligent robots need to interact with diverse objects across various environments. The appearance and state of objects frequently undergo complex transformations depending on the object properties, e.g., phase transitions. However, in the vision community, segmenting dynamic objects with phase transitions is overlooked. In light of this, we introduce the concept of phase in segmentation, which categorizes real-world objects based on their visual characteristics and potential morphological and appearance changes. Then, we present a new benchmark, Multi-Phase, Multi-Transition, and Multi-Scenery Video Object Segmentation (M3-VOS), to verify the ability of models to understand object phases, which consists of 479 high-resolution videos spanning over 10 distinct everyday scenarios. It provides dense instance mask annotations that capture both object phases and their transitions. We evaluate state-of-the-art methods on M3-VOS, yielding several key insights. Notably, current appearance-based approaches show significant room for improvement when handling objects with phase transitions. The inherent changes in disorder suggest that the predictive performance of the forward entropy-increasing process can be improved through a reverse entropy-reducing process. These findings lead us to propose ReVOS, a new plug-and-play model that improves its performance by reversal refinement. Our data and code will be publicly available at https://zixuan-chen.github.io/M-cube-VOS.github.io/. |
|
MatchPlant: An Open-Source Pipeline for UAV-Based Single-Plant Detection and Data Extraction |
GitHub |
Accurate identification of individual plants from unmanned aerial vehicle (UAV) images is essential for advancing high-throughput phenotyping and supporting data-driven decision-making in plant breeding. This study presents MatchPlant, a modular, graphical user interface-supported, open-source Python pipeline for UAV-based single-plant detection and geospatial trait extraction. MatchPlant enables end-to-end workflows by integrating UAV image processing, user-guided annotation, Convolutional Neural Network model training for object detection, forward projection of bounding boxes onto an orthomosaic, and shapefile generation for spatial phenotypic analysis. In an early-season maize case study, MatchPlant achieved reliable detection performance (validation AP: 89.6%, test AP: 85.9%) and effectively projected bounding boxes, covering 89.8% of manually annotated boxes with 87.5% of projections achieving an Intersection over Union (IoU) greater than 0.5. Trait values extracted from predicted bounding instances showed high agreement with manual annotations (r = 0.87-0.97, IoU >= 0.4). Detection outputs were reused across time points to extract plant height and Normalized Difference Vegetation Index with minimal additional annotation, facilitating efficient temporal phenotyping. By combining modular design, reproducibility, and geospatial precision, MatchPlant offers a scalable framework for UAV-based plant-level analysis with broad applicability in agricultural and environmental monitoring. |
|
Real-Time Per-Garment Virtual Try-On with Temporal Consistency for Loose-Fitting Garments |
GitHub |
Per-garment virtual try-on methods collect garment-specific datasets and train networks tailored to each garment to achieve superior results. However, these approaches often struggle with loose-fitting garments due to two key limitations: (1) They rely on human body semantic maps to align garments with the body, but these maps become unreliable when body contours are obscured by loose-fitting garments, resulting in degraded outcomes; (2) They train garment synthesis networks on a per-frame basis without utilizing temporal information, leading to noticeable jittering artifacts. To address these challenges, we propose a two-stage approach for robust semantic map estimation. First, we extract a garment-invariant representation from the raw input image. This representation is then passed through an auxiliary network to estimate the semantic map. This enhances the robustness of semantic map estimation under loose-fitting garments during garment-specific dataset generation. Furthermore, we introduce a recurrent garment synthesis framework that incorporates temporal dependencies to improve frame-to-frame coherence while maintaining real-time performance. We conducted qualitative and quantitative evaluations to demonstrate that our method outperforms existing approaches in both image quality and temporal coherence. Ablation studies further validate the effectiveness of the garment-invariant representation and the recurrent synthesis framework. |
|
Simple Radiology VLLM Test-time Scaling with Thought Graph Traversal |
GitHub |
Test-time scaling offers a promising way to improve the reasoning performance of vision-language large models (VLLMs) without additional training. In this paper, we explore a simple but effective approach for applying test-time scaling to radiology report generation. Specifically, we introduce a lightweight Thought Graph Traversal (TGT) framework that guides the model to reason through organ-specific findings in a medically coherent order. This framework integrates structured medical priors into the prompt, enabling deeper and more logical analysis with no changes to the underlying model. To further enhance reasoning depth, we apply a reasoning budget forcing strategy that adjusts the model's inference depth at test time by dynamically extending its generation process. This simple yet powerful combination allows a frozen radiology VLLM to self-correct and generate more accurate, consistent chest X-ray reports. Our method outperforms baseline prompting approaches on standard benchmarks, and also reveals dataset biases through traceable reasoning paths. Code and prompts are open-sourced for reproducibility at https://github.com/glerium/Thought-Graph-Traversal. |
|
Learning Encodings by Maximizing State Distinguishability: Variational Quantum Error Correction |
GitHub |
Quantum error correction is crucial for protecting quantum information against decoherence. Traditional codes like the surface code require substantial overhead, making them impractical for near-term, early fault-tolerant devices. We propose a novel objective function for tailoring error correction codes to specific noise structures by maximizing the distinguishability between quantum states after a noise channel, ensuring efficient recovery operations. We formalize this concept with the distinguishability loss function, serving as a machine learning objective to discover resource-efficient encoding circuits optimized for given noise characteristics. We implement this methodology using variational techniques, termed variational quantum error correction (VarQEC). Our approach yields codes with desirable theoretical and practical properties and outperforms standard codes in various scenarios. We also provide proof-of-concept demonstrations on IBM and IQM hardware devices, highlighting the practical relevance of our procedure. |
|
Recursive KalmanNet: Deep Learning-Augmented Kalman Filtering for State Estimation with Consistent Uncertainty Quantification |
GitHub |
State estimation in stochastic dynamical systems with noisy measurements is a challenge. While the Kalman filter is optimal for linear systems with independent Gaussian white noise, real-world conditions often deviate from these assumptions, prompting the rise of data-driven filtering techniques. This paper introduces Recursive KalmanNet, a Kalman-filter-informed recurrent neural network designed for accurate state estimation with consistent error covariance quantification. Our approach propagates error covariance using the recursive Joseph's formula and optimizes the Gaussian negative log-likelihood. Experiments with non-Gaussian measurement white noise demonstrate that our model outperforms both the conventional Kalman filter and an existing state-of-the-art deep learning based estimator. |
|
Vectorized Sparse Second-Order Forward Automatic Differentiation for Optimal Control Direct Methods |
GitHub |
Direct collocation methods are widely used numerical techniques for solving optimal control problems. The discretization of continuous-time optimal control problems transforms them into large-scale nonlinear programming problems, which require efficient computation of first- and second-order derivatives. To achieve computational efficiency, these derivatives must be computed in sparse and vectorized form, exploiting the problem's inherent sparsity structure. This paper presents a vectorized sparse second-order forward automatic differentiation framework designed for direct collocation methods in optimal control. The method exploits the problem's sparse structure to efficiently compute derivatives across multiple mesh points. By incorporating both scalar and vector nodes within the expression graph, the approach enables effective parallelization and optimized memory access patterns while maintaining flexibility for complex problems. The methodology is demonstrated through application to a prototype optimal control problem. A complete implementation for multi-phase optimal control problems is available as an open-source package, supporting both theoretical research and practical applications. |
|
FAME: A Lightweight Spatio-Temporal Network for Model Attribution of Face-Swap Deepfakes |
GitHub |
The widespread emergence of face-swap Deepfake videos poses growing risks to digital security, privacy, and media integrity, necessitating effective forensic tools for identifying the source of such manipulations. Although most prior research has focused primarily on binary Deepfake detection, the task of model attribution -- determining which generative model produced a given Deepfake -- remains underexplored. In this paper, we introduce FAME (Fake Attribution via Multilevel Embeddings), a lightweight and efficient spatio-temporal framework designed to capture subtle generative artifacts specific to different face-swap models. FAME integrates spatial and temporal attention mechanisms to improve attribution accuracy while remaining computationally efficient. We evaluate our model on three challenging and diverse datasets: Deepfake Detection and Manipulation (DFDM), FaceForensics++, and FakeAVCeleb. Results show that FAME consistently outperforms existing methods in both accuracy and runtime, highlighting its potential for deployment in real-world forensic and information security applications. |
|
FIMA-Q: Post-Training Quantization for Vision Transformers by Fisher Information Matrix Approximation |
GitHub |
Post-training quantization (PTQ) has stood out as a cost-effective and promising model compression paradigm in recent years, as it avoids computationally intensive model retraining. Nevertheless, current PTQ methods for Vision Transformers (ViTs) still suffer from significant accuracy degradation, especially under low-bit quantization. To address these shortcomings, we analyze the prevailing Hessian-guided quantization loss, and uncover certain limitations of conventional Hessian approximations. By following the block-wise reconstruction framework, we propose a novel PTQ method for ViTs, dubbed FIMA-Q. Specifically, we firstly establish the connection between KL divergence and FIM, which enables fast computation of the quantization loss during reconstruction. We further propose an efficient FIM approximation method, namely DPLR-FIM, by employing the diagonal plus low-rank principle, and formulate the ultimate quantization loss. Our extensive experiments, conducted across various vision tasks with representative ViT-based architectures on public datasets, demonstrate that our method substantially promotes the accuracy compared to the state-of-the-art approaches, especially in the case of low-bit quantization. The source code is available at https://github.com/ShiheWang/FIMA-Q. |
|
Dual‑detector Re‑optimization for Federated Weakly Supervised Video Anomaly Detection Via Adaptive Dynamic Recursive Mapping |
GitHub |
Federated weakly supervised video anomaly detection represents a significant advancement in privacy-preserving collaborative learning, enabling distributed clients to train anomaly detectors using only video-level annotations. However, the inherent challenges of optimizing noisy representation with coarse-grained labels often result in substantial local model errors, which are exacerbated during federated aggregation, particularly in heterogeneous scenarios. To address these limitations, we propose a novel dual-detector framework incorporating adaptive dynamic recursive mapping, which significantly enhances local model accuracy and robustness against representation noise. Our framework integrates two complementary components: a channel-averaged anomaly detector and a channel-statistical anomaly detector, which interact through cross-detector adaptive decision parameters to enable iterative optimization and stable anomaly scoring across all instances. Furthermore, we introduce the scene similarity adaptive local aggregation algorithm, which dynamically aggregates and learns private models based on scene similarity, thereby enhancing generalization capabilities across diverse scenarios. Extensive experiments conducted on the NVIDIA Jetson AGX Xavier platform using the ShanghaiTech and UBnormal datasets demonstrate the superior performance of our approach in both centralized and federated settings. Notably, in federated environments, our method achieves remarkable improvements of 6.2% and 12.3% in AUC compared to state-of-the-art methods, underscoring its effectiveness in resource-constrained scenarios and its potential for real-world applications in distributed video surveillance systems. |
|
Efficient Speech Enhancement via Embeddings from Pre-trained Generative Audioencoders |
GitHub |
Recent research has delved into speech enhancement (SE) approaches that leverage audio embeddings from pre-trained models, diverging from time-frequency masking or signal prediction techniques. This paper introduces an efficient and extensible SE method. Our approach involves initially extracting audio embeddings from noisy speech using a pre-trained audioencoder, which are then denoised by a compact encoder network. Subsequently, a vocoder synthesizes the clean speech from denoised embeddings. An ablation study substantiates the parameter efficiency of the denoise encoder with a pre-trained audioencoder and vocoder. Experimental results on both speech enhancement and speaker fidelity demonstrate that our generative audioencoder-based SE system outperforms models utilizing discriminative audioencoders. Furthermore, subjective listening tests validate that our proposed system surpasses an existing state-of-the-art SE model in terms of perceptual quality. |
|
Code Execution as Grounded Supervision for LLM Reasoning |
GitHub |
Training large language models (LLMs) with chain-of-thought (CoT) supervision has proven effective for enhancing their reasoning abilities. However, obtaining reliable and accurate reasoning supervision remains a significant challenge. We propose a scalable method for generating a high-quality CoT supervision dataset by leveraging the determinism of program execution. Unlike existing reasoning dataset generation methods that rely on costly human annotations or error-prone LLM-generated CoT, our approach extracts verifiable, step-by-step reasoning traces from code execution and transforms them into a natural language CoT reasoning. Experiments on reasoning benchmarks across various domains show that our method effectively equips LLMs with transferable reasoning abilities across diverse tasks. Furthermore, the ablation studies validate that our method produces highly accurate reasoning data and reduces overall token length during inference by reducing meaningless repetition and overthinking. |
|
GLAP: General contrastive audio-text pretraining across domains and languages |
GitHub |
Contrastive Language Audio Pretraining (CLAP) is a widely-used method to bridge the gap between audio and text domains. Current CLAP methods enable sound and music retrieval in English, ignoring multilingual spoken content. To address this, we introduce general language audio pretraining (GLAP), which expands CLAP with multilingual and multi-domain abilities. GLAP demonstrates its versatility by achieving competitive performance on standard audio-text retrieval benchmarks like Clotho and AudioCaps, while significantly surpassing existing methods in speech retrieval and classification tasks. Additionally, GLAP achieves strong results on widely used sound-event zero-shot benchmarks, while simultaneously outperforming previous methods on speech content benchmarks. Further keyword spotting evaluations across 50 languages emphasize GLAP's advanced multilingual capabilities. Finally, multilingual sound and music understanding is evaluated across four languages. Checkpoints and Source: https://github.com/xiaomi-research/dasheng-glap. |
|
ReCUT: Balancing Reasoning Length and Accuracy in LLMs via Stepwise Trails and Preference Optimization |
GitHub |
Recent advances in Chain-of-Thought (CoT) prompting have substantially improved the reasoning capabilities of Large Language Models (LLMs). However, these methods often suffer from overthinking, leading to unnecessarily lengthy or redundant reasoning traces. Existing approaches attempt to mitigate this issue through curating multiple reasoning chains for training LLMs, but their effectiveness is often constrained by the quality of the generated data and prone to overfitting. To address the challenge, we propose Reasoning Compression ThroUgh Stepwise Trials (ReCUT), a novel method aimed at balancing the accuracy and length of reasoning trajectory. Specifically, ReCUT employs a stepwise exploration mechanism and a long-short switched sampling strategy, enabling LLMs to incrementally generate diverse reasoning paths. These paths are evaluated and used to construct preference pairs to train two specialized models (Gemini LLMs)-one optimized for reasoning accuracy, the other for shorter reasoning. A final integrated model is obtained by interpolating the parameters of these two models. Experimental results across multiple math reasoning datasets and backbone models demonstrate that ReCUT significantly reduces reasoning lengths by approximately 30-50%, while maintaining or improving reasoning accuracy compared to various baselines. All codes and data will be released via https://github.com/NEUIR/ReCUT. |
|
CIIR@LiveRAG 2025: Optimizing Multi-Agent Retrieval Augmented Generation through Self-Training |
GitHub |
This paper presents mRAG, a multi-agent retrieval-augmented generation (RAG) framework composed of specialized agents for subtasks such as planning, searching, reasoning, and coordination. Our system uses a self-training paradigm with reward-guided trajectory sampling to optimize inter-agent collaboration and enhance response generation. Evaluated on DataMorgana-derived datasets during the SIGIR 2025 LiveRAG competition, mRAG outperforms conventional RAG baselines. We further analyze competition outcomes and showcase the framework's strengths with case studies, demonstrating its efficacy for complex, real-world RAG tasks. |
|
Accelerating Diffusion Large Language Models with SlowFast: The Three Golden Principles |
GitHub |
Diffusion-based language models (dLLMs) have emerged as a promising alternative to traditional autoregressive LLMs by enabling parallel token generation and significantly reducing inference latency. However, existing sampling strategies for dLLMs, such as confidence-based or semi-autoregressive decoding, often suffer from static behavior, leading to suboptimal efficiency and limited flexibility. In this paper, we propose SlowFast Sampling, a novel dynamic sampling strategy that adaptively alternates between exploratory and accelerated decoding stages. Our method is guided by three golden principles: certainty principle, convergence principle, and positional principle, which govern when and where tokens can be confidently and efficiently decoded. We further integrate our strategy with dLLM-Cache to reduce redundant computation. Extensive experiments across benchmarks and models show that SlowFast Sampling achieves up to 15.63$\times$ speedup on LLaDA with minimal accuracy drop, and up to 34.22$\times$ when combined with caching. Notably, our approach outperforms strong autoregressive baselines like LLaMA3 8B in throughput, demonstrating that well-designed sampling can unlock the full potential of dLLMs for fast and high-quality generation. |
|
Enhancing Medical Dialogue Generation through Knowledge Refinement and Dynamic Prompt Adjustment |
GitHub |
Medical dialogue systems (MDS) have emerged as crucial online platforms for enabling multi-turn, context-aware conversations with patients. However, existing MDS often struggle to (1) identify relevant medical knowledge and (2) generate personalized, medically accurate responses. To address these challenges, we propose MedRef, a novel MDS that incorporates knowledge refining and dynamic prompt adjustment. First, we employ a knowledge refining mechanism to filter out irrelevant medical data, improving predictions of critical medical entities in responses. Additionally, we design a comprehensive prompt structure that incorporates historical details and evident details. To enable real-time adaptability to diverse patient conditions, we implement two key modules, Triplet Filter and Demo Selector, providing appropriate knowledge and demonstrations equipped in the system prompt. Extensive experiments on MedDG and KaMed benchmarks show that MedRef outperforms state-of-the-art baselines in both generation quality and medical entity accuracy, underscoring its effectiveness and reliability for real-world healthcare applications. |
|
BioClinical ModernBERT: A State-of-the-Art Long-Context Encoder for Biomedical and Clinical NLP |
GitHub |
Encoder-based transformer models are central to biomedical and clinical Natural Language Processing (NLP), as their bidirectional self-attention makes them well-suited for efficiently extracting structured information from unstructured text through discriminative tasks. However, encoders have seen slower development compared to decoder models, leading to limited domain adaptation in biomedical and clinical settings. We introduce BioClinical ModernBERT, a domain-adapted encoder that builds on the recent ModernBERT release, incorporating long-context processing and substantial improvements in speed and performance for biomedical and clinical NLP. BioClinical ModernBERT is developed through continued pretraining on the largest biomedical and clinical corpus to date, with over 53.5 billion tokens, and addresses a key limitation of prior clinical encoders by leveraging 20 datasets from diverse institutions, domains, and geographic regions, rather than relying on data from a single source. It outperforms existing biomedical and clinical encoders on four downstream tasks spanning a broad range of use cases. We release both base (150M parameters) and large (396M parameters) versions of BioClinical ModernBERT, along with training checkpoints to support further research. |
|
SDialog: A Python Toolkit for Synthetic Dialogue Generation and Analysis |
GitHub |
The advancement of conversational AI systems relies on the availability of high-quality, flexible, and reproducible synthetic dialogues for training, evaluation, and benchmarking. SDialog is a modular, extensible Python toolkit designed to address the challenges of synthetic dialogue generation and analysis. By leveraging instruction-tuned Large Language Models (LLMs), SDialog provides abstractions for personas, orchestration, and scenario management, enabling the creation of realistic, diverse, and controllable conversational data for research and development. SDialog supports workflows such as multi-agent simulation and scenario-driven generation, and represents a step forward in the standardization of tools and frameworks for synthetic data generation, a crucial advancement for ensuring reproducibility in today's fast-evolving research landscape. |
|
TableRAG: A Retrieval Augmented Generation Framework for Heterogeneous Document Reasoning |
GitHub |
Retrieval-Augmented Generation (RAG) has demonstrated considerable effectiveness in open-domain question answering. However, when applied to heterogeneous documents, comprising both textual and tabular components, existing RAG approaches exhibit critical limitations. The prevailing practice of flattening tables and chunking strategies disrupts the intrinsic tabular structure, leads to information loss, and undermines the reasoning capabilities of LLMs in multi-hop, global queries. To address these challenges, we propose TableRAG, an hybrid framework that unifies textual understanding and complex manipulations over tabular data. TableRAG iteratively operates in four steps: context-sensitive query decomposition, text retrieval, SQL programming and execution, and compositional intermediate answer generation. We also develop HeteQA, a novel benchmark designed to evaluate the multi-hop heterogeneous reasoning capabilities. Experimental results demonstrate that TableRAG consistently outperforms existing baselines on both public datasets and our HeteQA, establishing a new state-of-the-art for heterogeneous document question answering. We release TableRAG at https://github.com/yxh-y/TableRAG/tree/main. |
|
NeuralNexus at BEA 2025 Shared Task: Retrieval-Augmented Prompting for Mistake Identification in AI Tutors |
GitHub |
This paper presents our system for Track 1: Mistake Identification in the BEA 2025 Shared Task on Pedagogical Ability Assessment of AI-powered Tutors. The task involves evaluating whether a tutor's response correctly identifies a mistake in a student's mathematical reasoning. We explore four approaches: (1) an ensemble of machine learning models over pooled token embeddings from multiple pretrained language models (LMs); (2) a frozen sentence-transformer using [CLS] embeddings with an MLP classifier; (3) a history-aware model with multi-head attention between token-level history and response embeddings; and (4) a retrieval-augmented few-shot prompting system with a large language model (LLM) i.e. GPT 4o. Our final system retrieves semantically similar examples, constructs structured prompts, and uses schema-guided output parsing to produce interpretable predictions. It outperforms all baselines, demonstrating the effectiveness of combining example-driven prompting with LLM reasoning for pedagogical feedback assessment. Our code is available at https://github.com/NaumanNaeem/BEA_2025. |
|
Table-Text Alignment: Explaining Claim Verification Against Tables in Scientific Papers |
GitHub |
Scientific claim verification against tables typically requires predicting whether a claim is supported or refuted given a table. However, we argue that predicting the final label alone is insufficient: it reveals little about the model's reasoning and offers limited interpretability. To address this, we reframe table-text alignment as an explanation task, requiring models to identify the table cells essential for claim verification. We build a new dataset by extending the SciTab benchmark with human-annotated cell-level rationales. Annotators verify the claim label and highlight the minimal set of cells needed to support their decision. After the annotation process, we utilize the collected information and propose a taxonomy for handling ambiguous cases. Our experiments show that (i) incorporating table alignment information improves claim verification performance, and (ii) most LLMs, while often predicting correct labels, fail to recover human-aligned rationales, suggesting that their predictions do not stem from faithful reasoning. |
|
Beyond True or False: Retrieval-Augmented Hierarchical Analysis of Nuanced Claims |
GitHub |
Claims made by individuals or entities are oftentimes nuanced and cannot be clearly labeled as entirely "true" or "false" -- as is frequently the case with scientific and political claims. However, a claim (e.g., "vaccine A is better than vaccine B") can be dissected into its integral aspects and sub-aspects (e.g., efficacy, safety, distribution), which are individually easier to validate. This enables a more comprehensive, structured response that provides a well-rounded perspective on a given problem while also allowing the reader to prioritize specific angles of interest within the claim (e.g., safety towards children). Thus, we propose ClaimSpect, a retrieval-augmented generation-based framework for automatically constructing a hierarchy of aspects typically considered when addressing a claim and enriching them with corpus-specific perspectives. This structure hierarchically partitions an input corpus to retrieve relevant segments, which assist in discovering new sub-aspects. Moreover, these segments enable the discovery of varying perspectives towards an aspect of the claim (e.g., support, neutral, or oppose) and their respective prevalence (e.g., "how many biomedical papers believe vaccine A is more transportable than B?"). We apply ClaimSpect to a wide variety of real-world scientific and political claims featured in our constructed dataset, showcasing its robustness and accuracy in deconstructing a nuanced claim and representing perspectives within a corpus. Through real-world case studies and human evaluation, we validate its effectiveness over multiple baselines. |
|
Towards Robust Multimodal Emotion Recognition under Missing Modalities and Distribution Shifts |
GitHub |
Recent advancements in Multimodal Emotion Recognition (MER) face challenges in addressing both modality missing and Out-Of-Distribution (OOD) data simultaneously. Existing methods often rely on specific models or introduce excessive parameters, which limits their practicality. To address these issues, we propose a novel robust MER framework, Causal Inference Distiller (CIDer), and introduce a new task, Random Modality Feature Missing (RMFM), to generalize the definition of modality missing. CIDer integrates two key components: a Model-Specific Self-Distillation (MSSD) module and a Model-Agnostic Causal Inference (MACI) module. MSSD enhances robustness under the RMFM task through a weight-sharing self-distillation approach applied across low-level features, attention maps, and high-level representations. Additionally, a Word-level Self-aligned Attention Module (WSAM) reduces computational complexity, while a Multimodal Composite Transformer (MCT) facilitates efficient multimodal fusion. To tackle OOD challenges, MACI employs a tailored causal graph to mitigate label and language biases using a Multimodal Causal Module (MCM) and fine-grained counterfactual texts. Notably, MACI can independently enhance OOD generalization with minimal additional parameters. Furthermore, we also introduce the new repartitioned MER OOD datasets. Experimental results demonstrate that CIDer achieves robust performance in both RMFM and OOD scenarios, with fewer parameters and faster training compared to state-of-the-art methods. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CIDer. |
|
Monitoring Decomposition Attacks in LLMs with Lightweight Sequential Monitors |
GitHub |
Current LLM safety defenses fail under decomposition attacks, where a malicious goal is decomposed into benign subtasks that circumvent refusals. The challenge lies in the existing shallow safety alignment techniques: they only detect harm in the immediate prompt and do not reason about long-range intent, leaving them blind to malicious intent that emerges over a sequence of seemingly benign instructions. We therefore propose adding an external monitor that observes the conversation at a higher granularity. To facilitate our study of monitoring decomposition attacks, we curate the largest and most diverse dataset to date, including question-answering, text-to-image, and agentic tasks. We verify our datasets by testing them on frontier LLMs and show an 87% attack success rate on average on GPT-4o. This confirms that decomposition attack is broadly effective. Additionally, we find that random tasks can be injected into the decomposed subtasks to further obfuscate malicious intents. To defend in real time, we propose a lightweight sequential monitoring framework that cumulatively evaluates each subtask. We show that a carefully prompt engineered lightweight monitor achieves a 93% defense success rate, beating reasoning models like o3 mini as a monitor. Moreover, it remains robust against random task injection and cuts cost by 90% and latency by 50%. Our findings suggest that lightweight sequential monitors are highly effective in mitigating decomposition attacks and are viable in deployment. |
|
TaxoAdapt: Aligning LLM-Based Multidimensional Taxonomy Construction to Evolving Research Corpora |
GitHub |
The rapid evolution of scientific fields introduces challenges in organizing and retrieving scientific literature. While expert-curated taxonomies have traditionally addressed this need, the process is time-consuming and expensive. Furthermore, recent automatic taxonomy construction methods either (1) over-rely on a specific corpus, sacrificing generalizability, or (2) depend heavily on the general knowledge of large language models (LLMs) contained within their pre-training datasets, often overlooking the dynamic nature of evolving scientific domains. Additionally, these approaches fail to account for the multi-faceted nature of scientific literature, where a single research paper may contribute to multiple dimensions (e.g., methodology, new tasks, evaluation metrics, benchmarks). To address these gaps, we propose TaxoAdapt, a framework that dynamically adapts an LLM-generated taxonomy to a given corpus across multiple dimensions. TaxoAdapt performs iterative hierarchical classification, expanding both the taxonomy width and depth based on corpus' topical distribution. We demonstrate its state-of-the-art performance across a diverse set of computer science conferences over the years to showcase its ability to structure and capture the evolution of scientific fields. As a multidimensional method, TaxoAdapt generates taxonomies that are 26.51% more granularity-preserving and 50.41% more coherent than the most competitive baselines judged by LLMs. |
|
Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning |
GitHub |
A wide range of scientific problems, such as those described by continuous-time dynamical systems and partial differential equations (PDEs), are naturally formulated on function spaces. While function spaces are typically infinite-dimensional, deep learning has predominantly advanced through applications in computer vision and natural language processing that focus on mappings between finite-dimensional spaces. Such fundamental disparities in the nature of the data have limited neural networks from achieving a comparable level of success in scientific applications as seen in other fields. Neural operators are a principled way to generalize neural networks to mappings between function spaces, offering a pathway to replicate deep learning's transformative impact on scientific problems. For instance, neural operators can learn solution operators for entire classes of PDEs, e.g., physical systems with different boundary conditions, coefficient functions, and geometries. A key factor in deep learning's success has been the careful engineering of neural architectures through extensive empirical testing. Translating these neural architectures into neural operators allows operator learning to enjoy these same empirical optimizations. However, prior neural operator architectures have often been introduced as standalone models, not directly derived as extensions of existing neural network architectures. In this paper, we identify and distill the key principles for constructing practical implementations of mappings between infinite-dimensional function spaces. Using these principles, we propose a recipe for converting several popular neural architectures into neural operators with minimal modifications. This paper aims to guide practitioners through this process and details the steps to make neural operators work in practice. Our code can be found at https://github.com/neuraloperator/NNs-to-NOs |
|
ReconMOST: Multi-Layer Sea Temperature Reconstruction with Observations-Guided Diffusion |
GitHub |
Accurate reconstruction of ocean is essential for reflecting global climate dynamics and supporting marine meteorological research. Conventional methods face challenges due to sparse data, algorithmic complexity, and high computational costs, while increasing usage of machine learning (ML) method remains limited to reconstruction problems at the sea surface and local regions, struggling with issues like cloud occlusion. To address these limitations, this paper proposes ReconMOST, a data-driven guided diffusion model framework for multi-layer sea temperature reconstruction. Specifically, we first pre-train an unconditional diffusion model using a large collection of historical numerical simulation data, enabling the model to attain physically consistent distribution patterns of ocean temperature fields. During the generation phase, sparse yet high-accuracy in-situ observational data are utilized as guidance points for the reverse diffusion process, generating accurate reconstruction results. Importantly, in regions lacking direct observational data, the physically consistent spatial distribution patterns learned during pre-training enable implicitly guided and physically plausible reconstructions. Our method extends ML-based SST reconstruction to a global, multi-layer setting, handling over 92.5% missing data while maintaining reconstruction accuracy, spatial resolution, and superior generalization capability. We pre-train our model on CMIP6 numerical simulation data and conduct guided reconstruction experiments on CMIP6 and EN4 analysis data. The results of mean squared error (MSE) values achieve 0.049 on guidance, 0.680 on reconstruction, and 0.633 on total, respectively, demonstrating the effectiveness and robustness of the proposed framework. Our source code is available at https://github.com/norsheep/ReconMOST. |
|
Semantic-decoupled Spatial Partition Guided Point-supervised Oriented Object Detection |
GitHub |
Recent remote sensing tech advancements drive imagery growth, making oriented object detection rapid development, yet hindered by labor-intensive annotation for high-density scenes. Oriented object detection with point supervision offers a cost-effective solution for densely packed scenes in remote sensing, yet existing methods suffer from inadequate sample assignment and instance confusion due to rigid rule-based designs. To address this, we propose SSP (Semantic-decoupled Spatial Partition), a unified framework that synergizes rule-driven prior injection and data-driven label purification. Specifically, SSP introduces two core innovations: 1) Pixel-level Spatial Partition-based Sample Assignment, which compactly estimates the upper and lower bounds of object scales and mines high-quality positive samples and hard negative samples through spatial partitioning of pixel maps. 2) Semantic Spatial Partition-based Box Extraction, which derives instances from spatial partitions modulated by semantic maps and reliably converts them into bounding boxes to form pseudo-labels for supervising the learning of downstream detectors. Experiments on DOTA-v1.0 and others demonstrate SSP\' s superiority: it achieves 45.78% mAP under point supervision, outperforming SOTA method PointOBB-v2 by 4.10%. Furthermore, when integrated with ORCNN and ReDet architectures, the SSP framework achieves mAP values of 47.86% and 48.50%, respectively. The code is available at https://github.com/antxinyuan/ssp. |
|
Detecting Sockpuppetry on Wikipedia Using Meta-Learning |
GitHub |
Malicious sockpuppet detection on Wikipedia is critical to preserving access to reliable information on the internet and preventing the spread of disinformation. Prior machine learning approaches rely on stylistic and meta-data features, but do not prioritise adaptability to author-specific behaviours. As a result, they struggle to effectively model the behaviour of specific sockpuppet-groups, especially when text data is limited. To address this, we propose the application of meta-learning, a machine learning technique designed to improve performance in data-scarce settings by training models across multiple tasks. Meta-learning optimises a model for rapid adaptation to the writing style of a new sockpuppet-group. Our results show that meta-learning significantly enhances the precision of predictions compared to pre-trained models, marking an advancement in combating sockpuppetry on open editing platforms. We release a new dataset of sockpuppet investigations to foster future research in both sockpuppetry and meta-learning fields. |
|
Decomposing MLP Activations into Interpretable Features via Semi-Nonnegative Matrix Factorization |
GitHub |
A central goal for mechanistic interpretability has been to identify the right units of analysis in large language models (LLMs) that causally explain their outputs. While early work focused on individual neurons, evidence that neurons often encode multiple concepts has motivated a shift toward analyzing directions in activation space. A key question is how to find directions that capture interpretable features in an unsupervised manner. Current methods rely on dictionary learning with sparse autoencoders (SAEs), commonly trained over residual stream activations to learn directions from scratch. However, SAEs often struggle in causal evaluations and lack intrinsic interpretability, as their learning is not explicitly tied to the computations of the model. Here, we tackle these limitations by directly decomposing MLP activations with semi-nonnegative matrix factorization (SNMF), such that the learned features are (a) sparse linear combinations of co-activated neurons, and (b) mapped to their activating inputs, making them directly interpretable. Experiments on Llama 3.1, Gemma 2 and GPT-2 show that SNMF derived features outperform SAEs and a strong supervised baseline (difference-in-means) on causal steering, while aligning with human-interpretable concepts. Further analysis reveals that specific neuron combinations are reused across semantically-related features, exposing a hierarchical structure in the MLP's activation space. Together, these results position SNMF as a simple and effective tool for identifying interpretable features and dissecting concept representations in LLMs. |
|
Execution Guided Line-by-Line Code Generation |
GitHub |
We present a novel approach to neural code generation that incorporates real-time execution signals into the language model generation process. While large language models (LLMs) have demonstrated impressive code generation capabilities, they typically do not utilize execution feedback during inference, a critical signal that human programmers regularly leverage. Our method, Execution-Guided Classifier-Free Guidance (EG-CFG), dynamically incorporates execution signals as the model generates code, providing line-by-line feedback that guides the generation process toward executable solutions. EG-CFG employs a multi-stage process: first, we conduct beam search to sample candidate program completions for each line; second, we extract execution signals by executing these candidates against test cases; and finally, we incorporate these signals into the prompt during generation. By maintaining consistent signals across tokens within the same line and refreshing signals at line boundaries, our approach provides coherent guidance while preserving syntactic structure. Moreover, the method naturally supports native parallelism at the task level in which multiple agents operate in parallel, exploring diverse reasoning paths and collectively generating a broad set of candidate solutions. Our experiments across diverse coding tasks demonstrate that EG-CFG significantly improves code generation performance compared to standard approaches, achieving state-of-the-art results across various levels of complexity, from foundational problems to challenging competitive programming tasks. Our code is available at: https://github.com/boazlavon/eg_cfg |
|
MSTAR: Box-free Multi-query Scene Text Retrieval with Attention Recycling |
GitHub |
Scene text retrieval has made significant progress with the assistance of accurate text localization. However, existing approaches typically require costly bounding box annotations for training. Besides, they mostly adopt a customized retrieval strategy but struggle to unify various types of queries to meet diverse retrieval needs. To address these issues, we introduce Muti-query Scene Text retrieval with Attention Recycling (MSTAR), a box-free approach for scene text retrieval. It incorporates progressive vision embedding to dynamically capture the multi-grained representation of texts and harmonizes free-style text queries with style-aware instructions. Additionally, a multi-instance matching module is integrated to enhance vision-language alignment. Furthermore, we build the Multi-Query Text Retrieval (MQTR) dataset, the first benchmark designed to evaluate the multi-query scene text retrieval capability of models, comprising four query types and 16k images. Extensive experiments demonstrate the superiority of our method across seven public datasets and the MQTR dataset. Notably, MSTAR marginally surpasses the previous state-of-the-art model by 6.4% in MAP on Total-Text while eliminating box annotation costs. Moreover, on the MQTR benchmark, MSTAR significantly outperforms the previous models by an average of 8.5%. The code and datasets are available at https://github.com/yingift/MSTAR. |
|
Time Series Forecasting as Reasoning: A Slow-Thinking Approach with Reinforced LLMs |
GitHub |
To advance time series forecasting (TSF), various methods have been proposed to improve prediction accuracy, evolving from statistical techniques to data-driven deep learning architectures. Despite their effectiveness, most existing methods still adhere to a fast thinking paradigm-relying on extracting historical patterns and mapping them to future values as their core modeling philosophy, lacking an explicit thinking process that incorporates intermediate time series reasoning. Meanwhile, emerging slow-thinking LLMs (e.g., OpenAI-o1) have shown remarkable multi-step reasoning capabilities, offering an alternative way to overcome these issues. However, prompt engineering alone presents several limitations - including high computational cost, privacy risks, and limited capacity for in-depth domain-specific time series reasoning. To address these limitations, a more promising approach is to train LLMs to develop slow thinking capabilities and acquire strong time series reasoning skills. For this purpose, we propose Time-R1, a two-stage reinforcement fine-tuning framework designed to enhance multi-step reasoning ability of LLMs for time series forecasting. Specifically, the first stage conducts supervised fine-tuning for warmup adaptation, while the second stage employs reinforcement learning to improve the model's generalization ability. Particularly, we design a fine-grained multi-objective reward specifically for time series forecasting, and then introduce GRIP (group-based relative importance for policy optimization), which leverages non-uniform sampling to further encourage and optimize the model's exploration of effective reasoning paths. Experiments demonstrate that Time-R1 significantly improves forecast performance across diverse datasets. |
|
Hessian Geometry of Latent Space in Generative Models |
GitHub |
This paper presents a novel method for analyzing the latent space geometry of generative models, including statistical physics models and diffusion models, by reconstructing the Fisher information metric. The method approximates the posterior distribution of latent variables given generated samples and uses this to learn the log-partition function, which defines the Fisher metric for exponential families. Theoretical convergence guarantees are provided, and the method is validated on the Ising and TASEP models, outperforming existing baselines in reconstructing thermodynamic quantities. Applied to diffusion models, the method reveals a fractal structure of phase transitions in the latent space, characterized by abrupt changes in the Fisher metric. We demonstrate that while geodesic interpolations are approximately linear within individual phases, this linearity breaks down at phase boundaries, where the diffusion model exhibits a divergent Lipschitz constant with respect to the latent space. These findings provide new insights into the complex structure of diffusion model latent spaces and their connection to phenomena like phase transitions. Our source code is available at https://github.com/alobashev/hessian-geometry-of-diffusion-models. |
|
Learning-Based Stable Optimal Control for Infinite-Time Nonlinear Regulation Problems |
GitHub |
Infinite-time nonlinear optimal regulation control is widely utilized in aerospace engineering as a systematic method for synthesizing stable controllers. However, conventional methods often rely on linearization hypothesis, while recent learning-based approaches rarely consider stability guarantees. This paper proposes a learning-based framework to learn a stable optimal controller for nonlinear optimal regulation problems. First, leveraging the equivalence between Pontryagin Maximum Principle (PMP) and Hamilton-Jacobi-Bellman (HJB) equation, we improve the backward generation of optimal examples (BGOE) method for infinite-time optimal regulation problems. A state-transition-matrix-guided data generation method is then proposed to efficiently generate a complete dataset that covers the desired state space. Finally, we incorporate the Lyapunov stability condition into the learning framework, ensuring the stability of the learned optimal policy by jointly learning the optimal value function and control policy. Simulations on three nonlinear optimal regulation problems show that the learned optimal policy achieves near-optimal regulation control and the code is provided at https://github.com/wong-han/PaperNORC |
|
Farseer: A Refined Scaling Law in Large Language Models |
GitHub |
Training Large Language Models (LLMs) is prohibitively expensive, creating a critical scaling gap where insights from small-scale experiments often fail to transfer to resource-intensive production systems, thereby hindering efficient innovation. To bridge this, we introduce Farseer, a novel and refined scaling law offering enhanced predictive accuracy across scales. By systematically constructing a model loss surface $L(N,D)$, Farseer achieves a significantly better fit to empirical data than prior laws (e.g., Chinchilla's law). Our methodology yields accurate, robust, and highly generalizable predictions, demonstrating excellent extrapolation capabilities, improving upon Chinchilla's law by reducing extrapolation error by 433\%. This allows for the reliable evaluation of competing training strategies across all $(N,D)$ settings, enabling conclusions from small-scale ablation studies to be confidently extrapolated to predict large-scale performance. Furthermore, Farseer provides new insights into optimal compute allocation, better reflecting the nuanced demands of modern LLM training. To validate our approach, we trained an extensive suite of approximately 1,000 LLMs across diverse scales and configurations, consuming roughly 3 million NVIDIA H100 GPU hours. We are comprehensively open-sourcing all models, data, results, and logs at https://github.com/Farseer-Scaling-Law/Farseer to foster further research. |
|
Saturation Self-Organizing Map |
GitHub |
Continual learning poses a fundamental challenge for neural systems, which often suffer from catastrophic forgetting when exposed to sequential tasks. Self-Organizing Maps (SOMs), despite their interpretability and efficiency, are not immune to this issue. In this paper, we introduce Saturation Self-Organizing Maps (SatSOM)-an extension of SOMs designed to improve knowledge retention in continual learning scenarios. SatSOM incorporates a novel saturation mechanism that gradually reduces the learning rate and neighborhood radius of neurons as they accumulate information. This effectively freezes well-trained neurons and redirects learning to underutilized areas of the map. |
|
A Study on Individual Spatiotemporal Activity Generation Method Using MCP-Enhanced Chain-of-Thought Large Language Models |
GitHub |
Human spatiotemporal behavior simulation is critical for urban planning research, yet traditional rule-based and statistical approaches suffer from high computational costs, limited generalizability, and poor scalability. While large language models (LLMs) show promise as "world simulators," they face challenges in spatiotemporal reasoning including limited spatial cognition, lack of physical constraint understanding, and group homogenization tendencies. This paper introduces a framework integrating chain-of-thought (CoT) reasoning with Model Context Protocol (MCP) to enhance LLMs' capability in simulating spatiotemporal behaviors that correspond with validation data patterns. The methodology combines human-like progressive reasoning through a five-stage cognitive framework with comprehensive data processing via six specialized MCP tool categories: temporal management, spatial navigation, environmental perception, personal memory, social collaboration, and experience evaluation. Experiments in Shanghai's Lujiazui district validate the framework's effectiveness across 1,000 generated samples. Results demonstrate high similarity with real mobile signaling data, achieving generation quality scores of 7.86 to 8.36 across different base models. Parallel processing experiments show efficiency improvements, with generation times decreasing from 1.30 to 0.17 minutes per sample when scaling from 2 to 12 processes. This work contributes to integrating CoT reasoning with MCP for urban behavior modeling, advancing LLMs applications in urban computing and providing a practical approach for synthetic mobility data generation. The framework offers a foundation for smart city planning, transportation forecasting, and participatory urban design applications. |
|
Efficiency Robustness of Dynamic Deep Learning Systems |
GitHub |
Deep Learning Systems (DLSs) are increasingly deployed in real-time applications, including those in resourceconstrained environments such as mobile and IoT devices. To address efficiency challenges, Dynamic Deep Learning Systems (DDLSs) adapt inference computation based on input complexity, reducing overhead. While this dynamic behavior improves efficiency, such behavior introduces new attack surfaces. In particular, efficiency adversarial attacks exploit these dynamic mechanisms to degrade system performance. This paper systematically explores efficiency robustness of DDLSs, presenting the first comprehensive taxonomy of efficiency attacks. We categorize these attacks based on three dynamic behaviors: (i) attacks on dynamic computations per inference, (ii) attacks on dynamic inference iterations, and (iii) attacks on dynamic output production for downstream tasks. Through an in-depth evaluation, we analyze adversarial strategies that target DDLSs efficiency and identify key challenges in securing these systems. In addition, we investigate existing defense mechanisms, demonstrating their limitations against increasingly popular efficiency attacks and the necessity for novel mitigation strategies to secure future adaptive DDLSs. |
|
Viability of Future Actions: Robust Safety in Reinforcement Learning via Entropy Regularization |
GitHub |
Despite the many recent advances in reinforcement learning (RL), the question of learning policies that robustly satisfy state constraints under unknown disturbances remains open. In this paper, we offer a new perspective on achieving robust safety by analyzing the interplay between two well-established techniques in model-free RL: entropy regularization, and constraints penalization. We reveal empirically that entropy regularization in constrained RL inherently biases learning toward maximizing the number of future viable actions, thereby promoting constraints satisfaction robust to action noise. Furthermore, we show that by relaxing strict safety constraints through penalties, the constrained RL problem can be approximated arbitrarily closely by an unconstrained one and thus solved using standard model-free RL. This reformulation preserves both safety and optimality while empirically improving resilience to disturbances. Our results indicate that the connection between entropy regularization and robustness is a promising avenue for further empirical and theoretical investigation, as it enables robust safety in RL through simple reward shaping. |
|
Lattice Climber Attack: Adversarial attacks for randomized mixtures of classifiers |
GitHub |
Finite mixtures of classifiers (a.k.a. randomized ensembles) have been proposed as a way to improve robustness against adversarial attacks. However, existing attacks have been shown to not suit this kind of classifier. In this paper, we discuss the problem of attacking a mixture in a principled way and introduce two desirable properties of attacks based on a geometrical analysis of the problem (effectiveness and maximality). We then show that existing attacks do not meet both of these properties. Finally, we introduce a new attack called {\em lattice climber attack} with theoretical guarantees in the binary linear setting, and demonstrate its performance by conducting experiments on synthetic and real datasets. |
|
Towards Understanding Bias in Synthetic Data for Evaluation |
GitHub |
Test collections are crucial for evaluating Information Retrieval (IR) systems. Creating a diverse set of user queries for these collections can be challenging, and obtaining relevance judgments, which indicate how well retrieved documents match a query, is often costly and resource-intensive. Recently, generating synthetic datasets using Large Language Models (LLMs) has gained attention in various applications. While previous work has used LLMs to generate synthetic queries or documents to improve ranking models, using LLMs to create synthetic test collections is still relatively unexplored. Previous work~\cite{rahmani2024synthetic} showed that synthetic test collections have the potential to be used for system evaluation, however, more analysis is needed to validate this claim. In this paper, we thoroughly investigate the reliability of synthetic test collections constructed using LLMs, where LLMs are used to generate synthetic queries, labels, or both. In particular, we examine the potential biases that might occur when such test collections are used for evaluation. We first empirically show the presence of such bias in evaluation results and analyse the effects it might have on system evaluation. We further validate the presence of such bias using a linear mixed-effects model. Our analysis shows that while the effect of bias present in evaluation results obtained using synthetic test collections could be significant, for e.g.~computing absolute system performance, its effect may not be as significant in comparing relative system performance. Codes and data are available at: https://github.com/rahmanidashti/BiasSyntheticData. |
|
SWDL: Stratum-Wise Difference Learning with Deep Laplacian Pyramid for Semi-Supervised 3D Intracranial Hemorrhage Segmentation |
GitHub |
Recent advances in medical imaging have established deep learning-based segmentation as the predominant approach, though it typically requires large amounts of manually annotated data. However, obtaining annotations for intracranial hemorrhage (ICH) remains particularly challenging due to the tedious and costly labeling process. Semi-supervised learning (SSL) has emerged as a promising solution to address the scarcity of labeled data, especially in volumetric medical image segmentation. Unlike conventional SSL methods that primarily focus on high-confidence pseudo-labels or consistency regularization, we propose SWDL-Net, a novel SSL framework that exploits the complementary advantages of Laplacian pyramid and deep convolutional upsampling. The Laplacian pyramid excels at edge sharpening, while deep convolutions enhance detail precision through flexible feature mapping. Our framework achieves superior segmentation of lesion details and boundaries through a difference learning mechanism that effectively integrates these complementary approaches. Extensive experiments on a 271-case ICH dataset and public benchmarks demonstrate that SWDL-Net outperforms current state-of-the-art methods in scenarios with only 2% labeled data. Additional evaluations on the publicly available Brain Hemorrhage Segmentation Dataset (BHSD) with 5% labeled data further confirm the superiority of our approach. Code and data have been released at https://github.com/SIAT-CT-LAB/SWDL. |
|
SOFT: Selective Data Obfuscation for Protecting LLM Fine-tuning against Membership Inference Attacks |
GitHub |
Large language models (LLMs) have achieved remarkable success and are widely adopted for diverse applications. However, fine-tuning these models often involves private or sensitive information, raising critical privacy concerns. In this work, we conduct the first comprehensive study evaluating the vulnerability of fine-tuned LLMs to membership inference attacks (MIAs). Our empirical analysis demonstrates that MIAs exploit the loss reduction during fine-tuning, making them highly effective in revealing membership information. These findings motivate the development of our defense. We propose SOFT (\textbf{S}elective data \textbf{O}bfuscation in LLM \textbf{F}ine-\textbf{T}uning), a novel defense technique that mitigates privacy leakage by leveraging influential data selection with an adjustable parameter to balance utility preservation and privacy protection. Our extensive experiments span six diverse domains and multiple LLM architectures and scales. Results show that SOFT effectively reduces privacy risks while maintaining competitive model performance, offering a practical and scalable solution to safeguard sensitive information in fine-tuned LLMs. |
|
Specification and Evaluation of Multi-Agent LLM Systems -- Prototype and Cybersecurity Applications |
GitHub |
Recent advancements in LLMs indicate potential for novel applications, e.g., through reasoning capabilities in the latest OpenAI and DeepSeek models. For applying these models in specific domains beyond text generation, LLM-based multi-agent approaches can be utilized that solve complex tasks by combining reasoning techniques, code generation, and software execution. Applications might utilize these capabilities and the knowledge of specialized LLM agents. However, while many evaluations are performed on LLMs, reasoning techniques, and applications individually, their joint specification and combined application is not explored well. Defined specifications for multi-agent LLM systems are required to explore their potential and their suitability for specific applications, allowing for systematic evaluations of LLMs, reasoning techniques, and related aspects. This paper reports the results of exploratory research to specify and evaluate these aspects through a multi-agent system. The system architecture and prototype are extended from previous research and a specification is introduced for multi-agent systems. Test cases involving cybersecurity tasks indicate feasibility of the architecture and evaluation approach. In particular, the results show the evaluation of question answering, server security, and network security tasks that were completed correctly by agents with LLMs from OpenAI and DeepSeek. |
|
FSATFusion: Frequency-Spatial Attention Transformer for Infrared and Visible Image Fusion |
GitHub |
The infrared and visible images fusion (IVIF) is receiving increasing attention from both the research community and industry due to its excellent results in downstream applications. Existing deep learning approaches often utilize convolutional neural networks to extract image features. However, the inherently capacity of convolution operations to capture global context can lead to information loss, thereby restricting fusion performance. To address this limitation, we propose an end-to-end fusion network named the Frequency-Spatial Attention Transformer Fusion Network (FSATFusion). The FSATFusion contains a frequency-spatial attention Transformer (FSAT) module designed to effectively capture discriminate features from source images. This FSAT module includes a frequency-spatial attention mechanism (FSAM) capable of extracting significant features from feature maps. Additionally, we propose an improved Transformer module (ITM) to enhance the ability to extract global context information of vanilla Transformer. We conducted both qualitative and quantitative comparative experiments, demonstrating the superior fusion quality and efficiency of FSATFusion compared to other state-of-the-art methods. Furthermore, our network was tested on two additional tasks without any modifications, to verify the excellent generalization capability of FSATFusion. Finally, the object detection experiment demonstrated the superiority of FSATFusion in downstream visual tasks. Our code is available at https://github.com/Lmmh058/FSATFusion. |
|
Automated Validation of Textual Constraints Against AutomationML via LLMs and SHACL |
GitHub |
AutomationML (AML) enables standardized data exchange in engineering, yet existing recommendations for proper AML modeling are typically formulated as informal and textual constraints. These constraints cannot be validated automatically within AML itself. This work-in-progress paper introduces a pipeline to formalize and verify such constraints. First, AML models are mapped to OWL ontologies via RML and SPARQL. In addition, a Large Language Model translates textual rules into SHACL constraints, which are then validated against the previously generated AML ontology. Finally, SHACL validation results are automatically interpreted in natural language. The approach is demonstrated on a sample AML recommendation. Results show that even complex modeling rules can be semi-automatically checked -- without requiring users to understand formal methods or ontology technologies. |
|
SoK: Evaluating Jailbreak Guardrails for Large Language Models |
GitHub |
Large Language Models (LLMs) have achieved remarkable progress, but their deployment has exposed critical vulnerabilities, particularly to jailbreak attacks that circumvent safety mechanisms. Guardrails--external defense mechanisms that monitor and control LLM interaction--have emerged as a promising solution. However, the current landscape of LLM guardrails is fragmented, lacking a unified taxonomy and comprehensive evaluation framework. In this Systematization of Knowledge (SoK) paper, we present the first holistic analysis of jailbreak guardrails for LLMs. We propose a novel, multi-dimensional taxonomy that categorizes guardrails along six key dimensions, and introduce a Security-Efficiency-Utility evaluation framework to assess their practical effectiveness. Through extensive analysis and experiments, we identify the strengths and limitations of existing guardrail approaches, explore their universality across attack types, and provide insights into optimizing defense combinations. Our work offers a structured foundation for future research and development, aiming to guide the principled advancement and deployment of robust LLM guardrails. The code is available at https://github.com/xunguangwang/SoK4JailbreakGuardrails. |
|
An Analysis of Datasets, Metrics and Models in Keyphrase Generation |
GitHub |
Keyphrase generation refers to the task of producing a set of words or phrases that summarises the content of a document. Continuous efforts have been dedicated to this task over the past few years, spreading across multiple lines of research, such as model architectures, data resources, and use-case scenarios. Yet, the current state of keyphrase generation remains unknown as there has been no attempt to review and analyse previous work. In this paper, we bridge this gap by presenting an analysis of over 50 research papers on keyphrase generation, offering a comprehensive overview of recent progress, limitations, and open challenges. Our findings highlight several critical issues in current evaluation practices, such as the concerning similarity among commonly-used benchmark datasets and inconsistencies in metric calculations leading to overestimated performances. Additionally, we address the limited availability of pre-trained models by releasing a strong PLM-based model for keyphrase generation as an effort to facilitate future research. |
|
ConTextTab: A Semantics-Aware Tabular In-Context Learner |
GitHub |
Tabular in-context learning (ICL) has recently achieved state-of-the-art (SOTA) performance on several tabular prediction tasks. Previously restricted to classification problems on small tables, recent advances such as TabPFN and TabICL have extended its use to larger datasets. While being architecturally efficient and well-adapted to tabular data structures, current table-native ICL architectures, being trained exclusively on synthetic data, do not fully leverage the rich semantics and world knowledge contained in real-world tabular data. On another end of this spectrum, tabular ICL models based on pretrained large language models such as TabuLa-8B integrate deep semantic understanding and world knowledge but are only able to make use of a small amount of context due to inherent architectural limitations. With the aim to combine the best of both these worlds, we introduce ConTextTab, integrating semantic understanding and alignment into a table-native ICL framework. By employing specialized embeddings for different data modalities and by training on large-scale real-world tabular data, our model is competitive with SOTA across a broad set of benchmarks while setting a new standard on the semantically rich CARTE benchmark. |
|
Size-adaptive Hypothesis Testing for Fairness |
GitHub |
Determining whether an algorithmic decision-making system discriminates against a specific demographic typically involves comparing a single point estimate of a fairness metric against a predefined threshold. This practice is statistically brittle: it ignores sampling error and treats small demographic subgroups the same as large ones. The problem intensifies in intersectional analyses, where multiple sensitive attributes are considered jointly, giving rise to a larger number of smaller groups. As these groups become more granular, the data representing them becomes too sparse for reliable estimation, and fairness metrics yield excessively wide confidence intervals, precluding meaningful conclusions about potential unfair treatments. In this paper, we introduce a unified, size-adaptive, hypothesis-testing framework that turns fairness assessment into an evidence-based statistical decision. Our contribution is twofold. (i) For sufficiently large subgroups, we prove a Central-Limit result for the statistical parity difference, leading to analytic confidence intervals and a Wald test whose type-I (false positive) error is guaranteed at level $\alpha$. (ii) For the long tail of small intersectional groups, we derive a fully Bayesian Dirichlet-multinomial estimator; Monte-Carlo credible intervals are calibrated for any sample size and naturally converge to Wald intervals as more data becomes available. We validate our approach empirically on benchmark datasets, demonstrating how our tests provide interpretable, statistically rigorous decisions under varying degrees of data availability and intersectionality. |
|
Leveraging 6DoF Pose Foundation Models For Mapping Marine Sediment Burial |
GitHub, GitHub |
The burial state of anthropogenic objects on the seafloor provides insight into localized sedimentation dynamics and is also critical for assessing ecological risks, potential pollutant transport, and the viability of recovery or mitigation strategies for hazardous materials such as munitions. Accurate burial depth estimation from remote imagery remains difficult due to partial occlusion, poor visibility, and object degradation. This work introduces a computer vision pipeline, called PoseIDON, which combines deep foundation model features with multiview photogrammetry to estimate six degrees of freedom object pose and the orientation of the surrounding seafloor from ROV video. Burial depth is inferred by aligning CAD models of the objects with observed imagery and fitting a local planar approximation of the seafloor. The method is validated using footage of 54 objects, including barrels and munitions, recorded at a historic ocean dumpsite in the San Pedro Basin. The model achieves a mean burial depth error of approximately 10 centimeters and resolves spatial burial patterns that reflect underlying sediment transport processes. This approach enables scalable, non-invasive mapping of seafloor burial and supports environmental assessment at contaminated sites. |
|
Beyond Attention or Similarity: Maximizing Conditional Diversity for Token Pruning in MLLMs |
GitHub |
In multimodal large language models (MLLMs), the length of input visual tokens is often significantly greater than that of their textual counterparts, leading to a high inference cost. Many works aim to address this issue by removing redundant visual tokens. However, current approaches either rely on attention-based pruning, which retains numerous duplicate tokens, or use similarity-based pruning, overlooking the instruction relevance, consequently causing suboptimal performance. In this paper, we go beyond attention or similarity by proposing a novel visual token pruning method named CDPruner, which maximizes the conditional diversity of retained tokens. We first define the conditional similarity between visual tokens conditioned on the instruction, and then reformulate the token pruning problem with determinantal point process (DPP) to maximize the conditional diversity of the selected subset. The proposed CDPruner is training-free and model-agnostic, allowing easy application to various MLLMs. Extensive experiments across diverse MLLMs show that CDPruner establishes new state-of-the-art on various vision-language benchmarks. By maximizing conditional diversity through DPP, the selected subset better represents the input images while closely adhering to user instructions, thereby preserving strong performance even with high reduction ratios. When applied to LLaVA, CDPruner reduces FLOPs by 95\% and CUDA latency by 78\%, while maintaining 94\% of the original accuracy. Our code is available at https://github.com/Theia-4869/CDPruner. |
|
ChineseHarm-Bench: A Chinese Harmful Content Detection Benchmark |
GitHub |
Large language models (LLMs) have been increasingly applied to automated harmful content detection tasks, assisting moderators in identifying policy violations and improving the overall efficiency and accuracy of content review. However, existing resources for harmful content detection are predominantly focused on English, with Chinese datasets remaining scarce and often limited in scope. We present a comprehensive, professionally annotated benchmark for Chinese content harm detection, which covers six representative categories and is constructed entirely from real-world data. Our annotation process further yields a knowledge rule base that provides explicit expert knowledge to assist LLMs in Chinese harmful content detection. In addition, we propose a knowledge-augmented baseline that integrates both human-annotated knowledge rules and implicit knowledge from large language models, enabling smaller models to achieve performance comparable to state-of-the-art LLMs. Code and data are available at https://github.com/zjunlp/ChineseHarm-bench. |
|
LightKG: Efficient Knowledge-Aware Recommendations with Simplified GNN Architecture |
GitHub |
Recently, Graph Neural Networks (GNNs) have become the dominant approach for Knowledge Graph-aware Recommender Systems (KGRSs) due to their proven effectiveness. Building upon GNN-based KGRSs, Self-Supervised Learning (SSL) has been incorporated to address the sparity issue, leading to longer training time. However, through extensive experiments, we reveal that: (1)compared to other KGRSs, the existing GNN-based KGRSs fail to keep their superior performance under sparse interactions even with SSL. (2) More complex models tend to perform worse in sparse interaction scenarios and complex mechanisms, like attention mechanism, can be detrimental as they often increase learning difficulty. Inspired by these findings, we propose LightKG, a simple yet powerful GNN-based KGRS to address sparsity issues. LightKG includes a simplified GNN layer that encodes directed relations as scalar pairs rather than dense embeddings and employs a linear aggregation framework, greatly reducing the complexity of GNNs. Additionally, LightKG incorporates an efficient contrastive layer to implement SSL. It directly minimizes the node similarity in original graph, avoiding the time-consuming subgraph generation and comparison required in previous SSL methods. Experiments on four benchmark datasets show that LightKG outperforms 12 competitive KGRSs in both sparse and dense scenarios while significantly reducing training time. Specifically, it surpasses the best baselines by an average of 5.8\% in recommendation accuracy and saves 84.3\% of training time compared to KGRSs with SSL. Our code is available at https://github.com/1371149/LightKG. |
|
Air in Your Neighborhood: Fine-Grained AQI Forecasting Using Mobile Sensor Data |
GitHub |
Air pollution has become a significant health risk in developing countries. While governments routinely publish air-quality index (AQI) data to track pollution, these values fail to capture the local reality, as sensors are often very sparse. In this paper, we address this gap by predicting AQI in 1 km^2 neighborhoods, using the example of AirDelhi dataset. Using Spatio-temporal GNNs we surpass existing works by 71.654 MSE a 79% reduction, even on unseen coordinates. New insights about AQI such as the existence of strong repetitive short-term patterns and changing spatial relations are also discovered. The code is available on GitHub. |
|
SWE-Factory: Your Automated Factory for Issue Resolution Training Data and Evaluation Benchmarks |
GitHub |
Constructing large-scale datasets for the GitHub issue resolution task is crucial for both training and evaluating the software engineering capabilities of Large Language Models (LLMs). However, the traditional process for creating such benchmarks is notoriously challenging and labor-intensive, particularly in the stages of setting up evaluation environments, grading test outcomes, and validating task instances. In this paper, we propose SWE-Factory, an automated pipeline designed to address these challenges. To tackle these issues, our pipeline integrates three core automated components. First, we introduce SWE-Builder, a multi-agent system that automates evaluation environment construction, which employs four specialized agents that work in a collaborative, iterative loop and leverages an environment memory pool to enhance efficiency. Second, we introduce a standardized, exit-code-based grading method that eliminates the need for manually writing custom parsers. Finally, we automate the fail2pass validation process using these reliable exit code signals. Experiments on 671 issues across four programming languages show that our pipeline can effectively construct valid task instances; for example, with GPT-4.1-mini, our SWE-Builder constructs 269 valid instances at $0.045 per instance, while with Gemini-2.5-flash, it achieves comparable performance at the lowest cost of $0.024 per instance. We also demonstrate that our exit-code-based grading achieves 100% accuracy compared to manual inspection, and our automated fail2pass validation reaches a precision of 0.92 and a recall of 1.00. We hope our automated pipeline will accelerate the collection of large-scale, high-quality GitHub issue resolution datasets for both training and evaluation. Our code and datasets are released at https://github.com/DeepSoftwareAnalytics/swe-factory. |
|
Robustly Improving LLM Fairness in Realistic Settings via Interpretability |
GitHub |
Large language models (LLMs) are increasingly deployed in high-stakes hiring applications, making decisions that directly impact people's careers and livelihoods. While prior studies suggest simple anti-bias prompts can eliminate demographic biases in controlled evaluations, we find these mitigations fail when realistic contextual details are introduced. We address these failures through internal bias mitigation: by identifying and neutralizing sensitive attribute directions within model activations, we achieve robust bias reduction across all tested scenarios. Across leading commercial (GPT-4o, Claude 4 Sonnet, Gemini 2.5 Flash) and open-source models (Gemma-2 27B, Gemma-3, Mistral-24B), we find that adding realistic context such as company names, culture descriptions from public careers pages, and selective hiring constraints (e.g.,``only accept candidates in the top 10\%") induces significant racial and gender biases (up to 12\% differences in interview rates). When these biases emerge, they consistently favor Black over White candidates and female over male candidates across all tested models and scenarios. Moreover, models can infer demographics and become biased from subtle cues like college affiliations, with these biases remaining invisible even when inspecting the model's chain-of-thought reasoning. To address these limitations, our internal bias mitigation identifies race and gender-correlated directions and applies affine concept editing at inference time. Despite using directions from a simple synthetic dataset, the intervention generalizes robustly, consistently reducing bias to very low levels (typically under 1\%, always below 2.5\%) while largely maintaining model performance. Our findings suggest that practitioners deploying LLMs for hiring should adopt more realistic evaluation methodologies and consider internal mitigation strategies for equitable outcomes. |
|
DART: Differentiable Dynamic Adaptive Region Tokenizer for Vision Transformer and Mamba |
GitHub |
Recently, non-convolutional models such as the Vision Transformer (ViT) and Vision Mamba (Vim) have achieved remarkable performance in computer vision tasks. However, their reliance on fixed-size patches often results in excessive encoding of background regions and omission of critical local details, especially when informative objects are sparsely distributed. To address this, we introduce a fully differentiable Dynamic Adaptive Region Tokenizer (DART), which adaptively partitions images into content-dependent patches of varying sizes. DART combines learnable region scores with piecewise differentiable quantile operations to allocate denser tokens to information-rich areas. Despite introducing only approximately 1 million (1M) additional parameters, DART improves accuracy by 2.1% on DeiT (ImageNet-1K). Unlike methods that uniformly increase token density to capture fine-grained details, DART offers a more efficient alternative, achieving 45% FLOPs reduction with superior performance. Extensive experiments on DeiT, Vim, and VideoMamba confirm that DART consistently enhances accuracy while incurring minimal or even reduced computational overhead. Code is available at https://github.com/HCPLab-SYSU/DART. |
|
Box-Constrained Softmax Function and Its Application for Post-Hoc Calibration |
GitHub |
Controlling the output probabilities of softmax-based models is a common problem in modern machine learning. Although the $\mathrm{Softmax}$ function provides soft control via its temperature parameter, it lacks the ability to enforce hard constraints, such as box constraints, on output probabilities, which can be critical in certain applications requiring reliable and trustworthy models. In this work, we propose the box-constrained softmax ($\mathrm{BCSoftmax}$) function, a novel generalization of the $\mathrm{Softmax}$ function that explicitly enforces lower and upper bounds on output probabilities. While $\mathrm{BCSoftmax}$ is formulated as the solution to a box-constrained optimization problem, we develop an exact and efficient computation algorithm for $\mathrm{BCSoftmax}$. As a key application, we introduce two post-hoc calibration methods based on $\mathrm{BCSoftmax}$. The proposed methods mitigate underconfidence and overconfidence in predictive models by learning the lower and upper bounds of the output probabilities or logits after model training, thereby enhancing reliability in downstream decision-making tasks. We demonstrate the effectiveness of our methods experimentally using the TinyImageNet, CIFAR-100, and 20NewsGroups datasets, achieving improvements in calibration metrics. |
|
Probably Approximately Correct Labels |
GitHub |
Obtaining high-quality labeled datasets is often costly, requiring either extensive human annotation or expensive experiments. We propose a method that supplements such "expert" labels with AI predictions from pre-trained models to construct labeled datasets more cost-effectively. Our approach results in probably approximately correct labels: with high probability, the overall labeling error is small. This solution enables rigorous yet efficient dataset curation using modern AI models. We demonstrate the benefits of the methodology through text annotation with large language models, image labeling with pre-trained vision models, and protein folding analysis with AlphaFold. |
|
OPT-BENCH: Evaluating LLM Agent on Large-Scale Search Spaces Optimization Problems |
GitHub |
Large Language Models (LLMs) have shown remarkable capabilities in solving diverse tasks. However, their proficiency in iteratively optimizing complex solutions through learning from previous feedback remains insufficiently explored. To bridge this gap, we present OPT-BENCH, a comprehensive benchmark designed to evaluate LLM agents on large-scale search space optimization problems. OPT-BENCH includes 20 real-world machine learning tasks sourced from Kaggle and 10 classical NP problems, offering a diverse and challenging environment for assessing LLM agents on iterative reasoning and solution refinement. To enable rigorous evaluation, we introduce OPT-Agent, an end-to-end optimization framework that emulates human reasoning when tackling complex problems by generating, validating, and iteratively improving solutions through leveraging historical feedback. Through extensive experiments on 9 state-of-the-art LLMs from 6 model families, we analyze the effects of optimization iterations, temperature settings, and model architectures on solution quality and convergence. Our results demonstrate that incorporating historical context significantly enhances optimization performance across both ML and NP tasks. All datasets, code, and evaluation tools are open-sourced to promote further research in advancing LLM-driven optimization and iterative reasoning. Project page: \href{https://github.com/OliverLeeXZ/OPT-BENCH}{https://github.com/OliverLeeXZ/OPT-BENCH}. |
|
IQE-CLIP: Instance-aware Query Embedding for Zero-/Few-shot Anomaly Detection in Medical Domain |
GitHub |
Recent advances in vision-language models, such as CLIP, have significantly improved performance in zero- and few-shot anomaly detection (ZFSAD) tasks. However, most existing CLIP-based methods assume prior knowledge of categories and rely on carefully designed prompts tailored to specific scenarios. While these text prompts capture semantic information in the textual space, they often fail to distinguish normal and anomalous instances in the joint embedding space. Moreover, most ZFSAD approaches focus on industrial domains, with limited exploration in medical tasks. To address these limitations, we propose IQE-CLIP, a novel framework for ZFSAD in the medical domain. We show that query embeddings integrating both textual and instance-aware visual information serve as more effective indicators of anomalies. Specifically, we introduce class-based and learnable prompting tokens to better adapt CLIP to the medical setting. Furthermore, we design an instance-aware query module that extracts region-level contextual information from both modalities, enabling the generation of anomaly-sensitive embeddings. Extensive experiments on six medical datasets demonstrate that IQE-CLIP achieves state-of-the-art performance in both zero-shot and few-shot settings. Code and data are available at \href{https://github.com/hongh0/IQE-CLIP/}{this https URL}. |
|
Spurious Rewards: Rethinking Training Signals in RLVR |
GitHub |
We show that reinforcement learning with verifiable rewards (RLVR) can elicit strong mathematical reasoning in certain models even with spurious rewards that have little, no, or even negative correlation with the correct answer. For example, RLVR improves MATH-500 performance for Qwen2.5-Math-7B in absolute points by 21.4% (random reward), 13.8% (format reward), 24.1% (incorrect label), 26.0% (1-shot RL), and 27.1% (majority voting) -- nearly matching the 29.1% gained with ground truth rewards. However, the spurious rewards that work for Qwen often fail to yield gains with other model families like Llama3 or OLMo2. In particular, we find code reasoning -- thinking in code without actual code execution -- to be a distinctive Qwen2.5-Math behavior that becomes significantly more frequent after RLVR, from 65% to over 90%, even with spurious rewards. Overall, we hypothesize that, given the lack of useful reward signal, RLVR must somehow be surfacing useful reasoning representations learned during pretraining, although the exact mechanism remains a topic for future work. We suggest that future RLVR research should possibly be validated on diverse models rather than a single de facto choice, as we show that it is easy to get significant performance gains on Qwen models even with completely spurious reward signals. |
|
A Benchmark for Generalizing Across Diverse Team Strategies in Competitive Pokémon |
GitHub |
Developing AI agents that can robustly adapt to dramatically different strategic landscapes without retraining is a central challenge for multi-agent learning. Pok\'emon Video Game Championships (VGC) is a domain with an extraordinarily large space of possible team configurations of approximately $10^{139}$ - far larger than those of Dota or Starcraft. The highly discrete, combinatorial nature of team building in Pok\'emon VGC causes optimal strategies to shift dramatically depending on both the team being piloted and the opponent's team, making generalization uniquely challenging. To advance research on this problem, we introduce VGC-Bench: a benchmark that provides critical infrastructure, standardizes evaluation protocols, and supplies human-play datasets and a range of baselines - from large-language-model agents and behavior cloning to reinforcement learning and empirical game-theoretic methods such as self-play, fictitious play, and double oracle. In the restricted setting where an agent is trained and evaluated on a single-team configuration, our methods are able to win against a professional VGC competitor. We extensively evaluated all baseline methods over progressively larger team sets and find that even the best-performing algorithm in the single-team setting struggles at scaling up as team size grows. Thus, policy generalization across diverse team strategies remains an open challenge for the community. Our code is open sourced at https://github.com/cameronangliss/VGC-Bench. |
|
Unsupervised Protoform Reconstruction through Parsimonious Rule-guided Heuristics and Evolutionary Search |
GitHub |
We propose an unsupervised method for the reconstruction of protoforms i.e., ancestral word forms from which modern language forms are derived. While prior work has primarily relied on probabilistic models of phonological edits to infer protoforms from cognate sets, such approaches are limited by their predominantly data-driven nature. In contrast, our model integrates data-driven inference with rule-based heuristics within an evolutionary optimization framework. This hybrid approach leverages on both statistical patterns and linguistically motivated constraints to guide the reconstruction process. We evaluate our method on the task of reconstructing Latin protoforms using a dataset of cognates from five Romance languages. Experimental results demonstrate substantial improvements over established baselines across both character-level accuracy and phonological plausibility metrics. |
|
It's Not the Target, It's the Background: Rethinking Infrared Small Target Detection via Deep Patch-Free Low-Rank Representations |
GitHub |
Infrared small target detection (IRSTD) remains a long-standing challenge in complex backgrounds due to low signal-to-clutter ratios (SCR), diverse target morphologies, and the absence of distinctive visual cues. While recent deep learning approaches aim to learn discriminative representations, the intrinsic variability and weak priors of small targets often lead to unstable performance. In this paper, we propose a novel end-to-end IRSTD framework, termed LRRNet, which leverages the low-rank property of infrared image backgrounds. Inspired by the physical compressibility of cluttered scenes, our approach adopts a compression--reconstruction--subtraction (CRS) paradigm to directly model structure-aware low-rank background representations in the image domain, without relying on patch-based processing or explicit matrix decomposition. To the best of our knowledge, this is the first work to directly learn low-rank background structures using deep neural networks in an end-to-end manner. Extensive experiments on multiple public datasets demonstrate that LRRNet outperforms 38 state-of-the-art methods in terms of detection accuracy, robustness, and computational efficiency. Remarkably, it achieves real-time performance with an average speed of 82.34 FPS. Evaluations on the challenging NoisySIRST dataset further confirm the model's resilience to sensor noise. The source code will be made publicly available upon acceptance. |
|
Transformer IMU Calibrator: Dynamic On-body IMU Calibration for Inertial Motion Capture |
GitHub |
In this paper, we propose a novel dynamic calibration method for sparse inertial motion capture systems, which is the first to break the restrictive absolute static assumption in IMU calibration, i.e., the coordinate drift RG'G and measurement offset RBS remain constant during the entire motion, thereby significantly expanding their application scenarios. Specifically, we achieve real-time estimation of RG'G and RBS under two relaxed assumptions: i) the matrices change negligibly in a short time window; ii) the human movements/IMU readings are diverse in such a time window. Intuitively, the first assumption reduces the number of candidate matrices, and the second assumption provides diverse constraints, which greatly reduces the solution space and allows for accurate estimation of RG'G and RBS from a short history of IMU readings in real time. To achieve this, we created synthetic datasets of paired RG'G, RBS matrices and IMU readings, and learned their mappings using a Transformer-based model. We also designed a calibration trigger based on the diversity of IMU readings to ensure that assumption ii) is met before applying our method. To our knowledge, we are the first to achieve implicit IMU calibration (i.e., seamlessly putting IMUs into use without the need for an explicit calibration process), as well as the first to enable long-term and accurate motion capture using sparse IMUs. The code and dataset are available at https://github.com/ZuoCX1996/TIC. |
|
CreatiPoster: Towards Editable and Controllable Multi-Layer Graphic Design Generation |
GitHub |
Graphic design plays a crucial role in both commercial and personal contexts, yet creating high-quality, editable, and aesthetically pleasing graphic compositions remains a time-consuming and skill-intensive task, especially for beginners. Current AI tools automate parts of the workflow, but struggle to accurately incorporate user-supplied assets, maintain editability, and achieve professional visual appeal. Commercial systems, like Canva Magic Design, rely on vast template libraries, which are impractical for replicate. In this paper, we introduce CreatiPoster, a framework that generates editable, multi-layer compositions from optional natural-language instructions or assets. A protocol model, an RGBA large multimodal model, first produces a JSON specification detailing every layer (text or asset) with precise layout, hierarchy, content and style, plus a concise background prompt. A conditional background model then synthesizes a coherent background conditioned on this rendered foreground layers. We construct a benchmark with automated metrics for graphic-design generation and show that CreatiPoster surpasses leading open-source approaches and proprietary commercial systems. To catalyze further research, we release a copyright-free corpus of 100,000 multi-layer designs. CreatiPoster supports diverse applications such as canvas editing, text overlay, responsive resizing, multilingual adaptation, and animated posters, advancing the democratization of AI-assisted graphic design. Project homepage: https://github.com/graphic-design-ai/creatiposter |
|
AIR: Zero-shot Generative Model Adaptation with Iterative Refinement |
GitHub |
Zero-shot generative model adaptation (ZSGM) aims to adapt a pre-trained generator to a target domain using only text guidance and without any samples from the target domain. Central to recent ZSGM approaches are directional loss which use the text guidance in the form of aligning the image offset with text offset in the embedding space of a vision-language model like CLIP. This is similar to the analogical reasoning in NLP where the offset between one pair of words is used to identify a missing element in another pair by aligning the offset between these two pairs. However, a major limitation of existing ZSGM methods is that the learning objective assumes the complete alignment between image offset and text offset in the CLIP embedding space, resulting in quality degrade in generated images. Our work makes two main contributions. Inspired by the offset misalignment studies in NLP, as our first contribution, we perform an empirical study to analyze the misalignment between text offset and image offset in CLIP embedding space for various large publicly available datasets. Our important finding is that offset misalignment in CLIP embedding space is correlated with concept distance, i.e., close concepts have a less offset misalignment. To address the limitations of the current approaches, as our second contribution, we propose Adaptation with Iterative Refinement (AIR) which is the first ZSGM approach to focus on improving target domain image quality based on our new insight on offset misalignment.Qualitative, quantitative, and user study in 26 experiment setups consistently demonstrate the proposed AIR approach achieves SOTA performance. Additional experiments are in Supp. |
|
QuadricFormer: Scene as Superquadrics for 3D Semantic Occupancy Prediction |
GitHub |
3D occupancy prediction is crucial for robust autonomous driving systems as it enables comprehensive perception of environmental structures and semantics. Most existing methods employ dense voxel-based scene representations, ignoring the sparsity of driving scenes and resulting in inefficiency. Recent works explore object-centric representations based on sparse Gaussians, but their ellipsoidal shape prior limits the modeling of diverse structures. In real-world driving scenes, objects exhibit rich geometries (e.g., cuboids, cylinders, and irregular shapes), necessitating excessive ellipsoidal Gaussians densely packed for accurate modeling, which leads to inefficient representations. To address this, we propose to use geometrically expressive superquadrics as scene primitives, enabling efficient representation of complex structures with fewer primitives through their inherent shape diversity. We develop a probabilistic superquadric mixture model, which interprets each superquadric as an occupancy probability distribution with a corresponding geometry prior, and calculates semantics through probabilistic mixture. Building on this, we present QuadricFormer, a superquadric-based model for efficient 3D occupancy prediction, and introduce a pruning-and-splitting module to further enhance modeling efficiency by concentrating superquadrics in occupied regions. Extensive experiments on the nuScenes dataset demonstrate that QuadricFormer achieves state-of-the-art performance while maintaining superior efficiency. |
|
ContextRefine-CLIP for EPIC-KITCHENS-100 Multi-Instance Retrieval Challenge 2025 |
GitHub |
This report presents ContextRefine-CLIP (CR-CLIP), an efficient model for visual-textual multi-instance retrieval tasks. The approach is based on the dual-encoder AVION, on which we introduce a cross-modal attention flow module to achieve bidirectional dynamic interaction and refinement between visual and textual features to generate more context-aware joint representations. For soft-label relevance matrices provided in tasks such as EPIC-KITCHENS-100, CR-CLIP can work with Symmetric Multi-Similarity Loss to achieve more accurate semantic alignment and optimization using the refined features. Without using ensemble learning, the CR-CLIP model achieves 66.78mAP and 82.08nDCG on the EPIC-KITCHENS-100 public leaderboard, which significantly outperforms the baseline model and fully validates its effectiveness in cross-modal retrieval. The code will be released open-source on https://github.com/delCayr/ContextRefine-Clip |
|
TexTailor: Customized Text-aligned Texturing via Effective Resampling |
GitHub |
We present TexTailor, a novel method for generating consistent object textures from textual descriptions. Existing text-to-texture synthesis approaches utilize depth-aware diffusion models to progressively generate images and synthesize textures across predefined multiple viewpoints. However, these approaches lead to a gradual shift in texture properties across viewpoints due to (1) insufficient integration of previously synthesized textures at each viewpoint during the diffusion process and (2) the autoregressive nature of the texture synthesis process. Moreover, the predefined selection of camera positions, which does not account for the object's geometry, limits the effective use of texture information synthesized from different viewpoints, ultimately degrading overall texture consistency. In TexTailor, we address these issues by (1) applying a resampling scheme that repeatedly integrates information from previously synthesized textures within the diffusion process, and (2) fine-tuning a depth-aware diffusion model on these resampled textures. During this process, we observed that using only a few training images restricts the model's original ability to generate high-fidelity images aligned with the conditioning, and therefore propose an performance preservation loss to mitigate this issue. Additionally, we improve the synthesis of view-consistent textures by adaptively adjusting camera positions based on the object's geometry. Experiments on a subset of the Objaverse dataset and the ShapeNet car dataset demonstrate that TexTailor outperforms state-of-the-art methods in synthesizing view-consistent textures. The source code for TexTailor is available at https://github.com/Adios42/Textailor |
|
NoLoCo: No-all-reduce Low Communication Training Method for Large Models |
GitHub |
Training large language models is generally done via optimization methods on clusters containing tens of thousands of accelerators, communicating over a high-bandwidth interconnect. Scaling up these clusters is expensive and can become impractical, imposing limits on the size of models that can be trained. Several recent studies have proposed training methods that are less communication intensive, avoiding the need for a highly connected compute cluster. These state-of-the-art low communication training methods still employ a synchronization step for model parameters, which, when performed over all model replicas, can become costly on a low-bandwidth network. In this work, we propose a novel optimization method, NoLoCo, that does not explicitly synchronize all model parameters during training and, as a result, does not require any collective communication. NoLoCo implicitly synchronizes model weights via a novel variant of the Nesterov momentum optimizer by partially averaging model weights with a randomly selected other one. We provide both a theoretical convergence analysis for our proposed optimizer as well as empirical results from language model training. We benchmark NoLoCo on a wide range of accelerator counts and model sizes, between 125M to 6.8B parameters. Our method requires significantly less communication overhead than fully sharded data parallel training or even widely used low communication training method, DiLoCo. The synchronization step itself is estimated to be one magnitude faster than the all-reduce used in DiLoCo for few hundred accelerators training over the internet. We also do not have any global blocking communication that reduces accelerator idling time. Compared to DiLoCo, we also observe up to $4\%$ faster convergence rate with wide range of model sizes and accelerator counts. |
|
PiPViT: Patch-based Visual Interpretable Prototypes for Retinal Image Analysis |
GitHub |
Background and Objective: Prototype-based methods improve interpretability by learning fine-grained part-prototypes; however, their visualization in the input pixel space is not always consistent with human-understandable biomarkers. In addition, well-known prototype-based approaches typically learn extremely granular prototypes that are less interpretable in medical imaging, where both the presence and extent of biomarkers and lesions are critical. Methods: To address these challenges, we propose PiPViT (Patch-based Visual Interpretable Prototypes), an inherently interpretable prototypical model for image recognition. Leveraging a vision transformer (ViT), PiPViT captures long-range dependencies among patches to learn robust, human-interpretable prototypes that approximate lesion extent only using image-level labels. Additionally, PiPViT benefits from contrastive learning and multi-resolution input processing, which enables effective localization of biomarkers across scales. Results: We evaluated PiPViT on retinal OCT image classification across four datasets, where it achieved competitive quantitative performance compared to state-of-the-art methods while delivering more meaningful explanations. Moreover, quantitative evaluation on a hold-out test set confirms that the learned prototypes are semantically and clinically relevant. We believe PiPViT can transparently explain its decisions and assist clinicians in understanding diagnostic outcomes. Github page: https://github.com/marziehoghbaie/PiPViT |
|
TreeLoRA: Efficient Continual Learning via Layer-Wise LoRAs Guided by a Hierarchical Gradient-Similarity Tree |
GitHub |
Many real-world applications collect data in a streaming environment, where learning tasks are encountered sequentially. This necessitates continual learning (CL) to update models online, enabling adaptation to new tasks while preserving past knowledge to prevent catastrophic forgetting. Nowadays, with the flourish of large pre-trained models (LPMs), efficiency has become increasingly critical for CL, due to their substantial computational demands and growing parameter sizes. In this paper, we introduce TreeLoRA (K-D Tree of Low-Rank Adapters), a novel approach that constructs layer-wise adapters by leveraging hierarchical gradient similarity to enable efficient CL, particularly for LPMs. To reduce the computational burden of task similarity estimation, we employ bandit techniques to develop an algorithm based on lower confidence bounds to efficiently explore the task structure. Furthermore, we use sparse gradient updates to facilitate parameter optimization, making the approach better suited for LPMs. Theoretical analysis is provided to justify the rationale behind our approach, and experiments on both vision transformers (ViTs) and large language models (LLMs) demonstrate the effectiveness and efficiency of our approach across various domains, including vision and natural language processing tasks. |
|
PyLO: Towards Accessible Learned Optimizers in PyTorch |
GitHub |
Learned optimizers have been an active research topic over the past decade, with increasing progress toward practical, general-purpose optimizers that can serve as drop-in replacements for widely used methods like Adam. However, recent advances -- such as VeLO, which was meta-trained for 4000 TPU-months -- remain largely inaccessible to the broader community, in part due to their reliance on JAX and the absence of user-friendly packages for applying the optimizers after meta-training. To address this gap, we introduce PyLO, a PyTorch-based library that brings learned optimizers to the broader machine learning community through familiar, widely adopted workflows. Unlike prior work focused on synthetic or convex tasks, our emphasis is on applying learned optimization to real-world large-scale pre-training tasks. Our release includes a CUDA-accelerated version of the small_fc_lopt learned optimizer architecture from (Metz et al., 2022a), delivering substantial speedups -- from 39.36 to 205.59 samples/sec throughput for training ViT B/16 with batch size 32. PyLO also allows us to easily combine learned optimizers with existing optimization tools such as learning rate schedules and weight decay. When doing so, we find that learned optimizers can substantially benefit. Our code is available at https://github.com/Belilovsky-Lab/pylo |
|
Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification? |
GitHub |
Toxicity remains a leading cause of early-stage drug development failure. Despite advances in molecular design and property prediction, the task of molecular toxicity repair - generating structurally valid molecular alternatives with reduced toxicity - has not yet been systematically defined or benchmarked. To fill this gap, we introduce ToxiMol, the first benchmark task for general-purpose Multimodal Large Language Models (MLLMs) focused on molecular toxicity repair. We construct a standardized dataset covering 11 primary tasks and 560 representative toxic molecules spanning diverse mechanisms and granularities. We design a prompt annotation pipeline with mechanism-aware and task-adaptive capabilities, informed by expert toxicological knowledge. In parallel, we propose an automated evaluation framework, ToxiEval, which integrates toxicity endpoint prediction, synthetic accessibility, drug-likeness, and structural similarity into a high-throughput evaluation chain for repair success. We systematically assess nearly 30 mainstream general-purpose MLLMs and design multiple ablation studies to analyze key factors such as evaluation criteria, candidate diversity, and failure attribution. Experimental results show that although current MLLMs still face significant challenges on this task, they begin to demonstrate promising capabilities in toxicity understanding, semantic constraint adherence, and structure-aware molecule editing. |
|
The Diffusion Duality |
GitHub |
Uniform-state discrete diffusion models hold the promise of fast text generation due to their inherent ability to self-correct. However, they are typically outperformed by autoregressive models and masked diffusion models. In this work, we narrow this performance gap by leveraging a key insight: Uniform-state diffusion processes naturally emerge from an underlying Gaussian diffusion. Our method, Duo, transfers powerful techniques from Gaussian diffusion to improve both training and sampling. First, we introduce a curriculum learning strategy guided by the Gaussian process, doubling training speed by reducing variance. Models trained with curriculum learning surpass autoregressive models in zero-shot perplexity on 3 of 7 benchmarks. Second, we present Discrete Consistency Distillation, which adapts consistency distillation from the continuous to the discrete setting. This algorithm unlocks few-step generation in diffusion language models by accelerating sampling by two orders of magnitude. We provide the code and model checkpoints on the project page: http://s-sahoo.github.io/duo |
|
Low-Barrier Dataset Collection with Real Human Body for Interactive Per-Garment Virtual Try-On |
GitHub |
Existing image-based virtual try-on methods are often limited to the front view and lack real-time performance. While per-garment virtual try-on methods have tackled these issues by capturing per-garment datasets and training per-garment neural networks, they still encounter practical limitations: (1) the robotic mannequin used to capture per-garment datasets is prohibitively expensive for widespread adoption and fails to accurately replicate natural human body deformation; (2) the synthesized garments often misalign with the human body. To address these challenges, we propose a low-barrier approach for collecting per-garment datasets using real human bodies, eliminating the necessity for a customized robotic mannequin. We also introduce a hybrid person representation that enhances the existing intermediate representation with a simplified DensePose map. This ensures accurate alignment of synthesized garment images with the human body and enables human-garment interaction without the need for customized wearable devices. We performed qualitative and quantitative evaluations against other state-of-the-art image-based virtual try-on methods and conducted ablation studies to demonstrate the superiority of our method regarding image quality and temporal consistency. Finally, our user study results indicated that most participants found our virtual try-on system helpful for making garment purchasing decisions. |
|
Graph Neural Networks for Automatic Addition of Optimizing Components in Printed Circuit Board Schematics |
GitHub |
The design and optimization of Printed Circuit Board (PCB) schematics is crucial for the development of high-quality electronic devices. Thereby, an important task is to optimize drafts by adding components that improve the robustness and reliability of the circuit, e.g., pull-up resistors or decoupling capacitors. Since there is a shortage of skilled engineers and manual optimizations are very time-consuming, these best practices are often neglected. However, this typically leads to higher costs for troubleshooting in later development stages as well as shortened product life cycles, resulting in an increased amount of electronic waste that is difficult to recycle. Here, we present an approach for automating the addition of new components into PCB schematics by representing them as bipartite graphs and utilizing a node pair prediction model based on Graph Neural Networks (GNNs). We apply our approach to three highly relevant PCB design optimization tasks and compare the performance of several popular GNN architectures on real-world datasets labeled by human experts. We show that GNNs can solve these problems with high accuracy and demonstrate that our approach offers the potential to automate PCB design optimizations in a time- and cost-efficient manner. |
|
Equivariant Neural Diffusion for Molecule Generation |
GitHub |
We introduce Equivariant Neural Diffusion (END), a novel diffusion model for molecule generation in 3D that is equivariant to Euclidean transformations. Compared to current state-of-the-art equivariant diffusion models, the key innovation in END lies in its learnable forward process for enhanced generative modelling. Rather than pre-specified, the forward process is parameterized through a time- and data-dependent transformation that is equivariant to rigid transformations. Through a series of experiments on standard molecule generation benchmarks, we demonstrate the competitive performance of END compared to several strong baselines for both unconditional and conditional generation. |
|
Precise Zero-Shot Pointwise Ranking with LLMs through Post-Aggregated Global Context Information |
GitHub |
Recent advancements have successfully harnessed the power of Large Language Models (LLMs) for zero-shot document ranking, exploring a variety of prompting strategies. Comparative approaches like pairwise and listwise achieve high effectiveness but are computationally intensive and thus less practical for larger-scale applications. Scoring-based pointwise approaches exhibit superior efficiency by independently and simultaneously generating the relevance scores for each candidate document. However, this independence ignores critical comparative insights between documents, resulting in inconsistent scoring and suboptimal performance. In this paper, we aim to improve the effectiveness of pointwise methods while preserving their efficiency through two key innovations: (1) We propose a novel Global-Consistent Comparative Pointwise Ranking (GCCP) strategy that incorporates global reference comparisons between each candidate and an anchor document to generate contrastive relevance scores. We strategically design the anchor document as a query-focused summary of pseudo-relevant candidates, which serves as an effective reference point by capturing the global context for document comparison. (2) These contrastive relevance scores can be efficiently Post-Aggregated with existing pointwise methods, seamlessly integrating essential Global Context information in a training-free manner (PAGC). Extensive experiments on the TREC DL and BEIR benchmark demonstrate that our approach significantly outperforms previous pointwise methods while maintaining comparable efficiency. Our method also achieves competitive performance against comparative methods that require substantially more computational resources. More analyses further validate the efficacy of our anchor construction strategy. |
|
AniMaker: Automated Multi-Agent Animated Storytelling with MCTS-Driven Clip Generation |
GitHub |
Despite rapid advancements in video generation models, generating coherent storytelling videos that span multiple scenes and characters remains challenging. Current methods often rigidly convert pre-generated keyframes into fixed-length clips, resulting in disjointed narratives and pacing issues. Furthermore, the inherent instability of video generation models means that even a single low-quality clip can significantly degrade the entire output animation's logical coherence and visual continuity. To overcome these obstacles, we introduce AniMaker, a multi-agent framework enabling efficient multi-candidate clip generation and storytelling-aware clip selection, thus creating globally consistent and story-coherent animation solely from text input. The framework is structured around specialized agents, including the Director Agent for storyboard generation, the Photography Agent for video clip generation, the Reviewer Agent for evaluation, and the Post-Production Agent for editing and voiceover. Central to AniMaker's approach are two key technical components: MCTS-Gen in Photography Agent, an efficient Monte Carlo Tree Search (MCTS)-inspired strategy that intelligently navigates the candidate space to generate high-potential clips while optimizing resource usage; and AniEval in Reviewer Agent, the first framework specifically designed for multi-shot animation evaluation, which assesses critical aspects such as story-level consistency, action completion, and animation-specific features by considering each clip in the context of its preceding and succeeding clips. Experiments demonstrate that AniMaker achieves superior quality as measured by popular metrics including VBench and our proposed AniEval framework, while significantly improving the efficiency of multi-candidate generation, pushing AI-generated storytelling animation closer to production standards. |
|
Constructing and Evaluating Declarative RAG Pipelines in PyTerrier |
GitHub |
Search engines often follow a pipeline architecture, where complex but effective reranking components are used to refine the results of an initial retrieval. Retrieval augmented generation (RAG) is an exciting application of the pipeline architecture, where the final component generates a coherent answer for the users from the retrieved documents. In this demo paper, we describe how such RAG pipelines can be formulated in the declarative PyTerrier architecture, and the advantages of doing so. Our PyTerrier-RAG extension for PyTerrier provides easy access to standard RAG datasets and evaluation measures, state-of-the-art LLM readers, and using PyTerrier's unique operator notation, easy-to-build pipelines. We demonstrate the succinctness of indexing and RAG pipelines on standard datasets (including Natural Questions) and how to build on the larger PyTerrier ecosystem with state-of-the-art sparse, learned-sparse, and dense retrievers, and other neural rankers. |
|
VideoDeepResearch: Long Video Understanding With Agentic Tool Using |
GitHub |
Long video understanding (LVU) presents a significant challenge for current multi-modal large language models (MLLMs) due to the task's inherent complexity and context window constraint. It is widely assumed that addressing LVU tasks requires foundation MLLMs with extended context windows, strong visual perception capabilities, and proficient domain expertise. In this work, we challenge this common belief by introducing VideoDeepResearch, a novel agentic framework for long video understanding. Our approach relies solely on a text-only large reasoning model (LRM) combined with a modular multi-modal toolkit, including multimodal retrievers and visual perceivers, all of which are readily available in practice. For each LVU task, the system formulates a problem-solving strategy through reasoning, while selectively accessing and utilizing essential video content via tool using. We conduct extensive experiments on popular LVU benchmarks, including MLVU, Video-MME, and LVBench. Our results demonstrate that VideoDeepResearch achieves substantial improvements over existing MLLM baselines, surpassing the previous state-of-the-art by 9.6%, 6.6%, and 3.9% on MLVU (test), LVBench, and LongVideoBench, respectively. These findings highlight the promise of agentic systems in overcoming key challenges in LVU problems. |
|
Discovering Hierarchical Latent Capabilities of Language Models via Causal Representation Learning |
GitHub |
Faithful evaluation of language model capabilities is crucial for deriving actionable insights that can inform model development. However, rigorous causal evaluations in this domain face significant methodological challenges, including complex confounding effects and prohibitive computational costs associated with extensive retraining. To tackle these challenges, we propose a causal representation learning framework wherein observed benchmark performance is modeled as a linear transformation of a few latent capability factors. Crucially, these latent factors are identified as causally interrelated after appropriately controlling for the base model as a common confounder. Applying this approach to a comprehensive dataset encompassing over 1500 models evaluated across six benchmarks from the Open LLM Leaderboard, we identify a concise three-node linear causal structure that reliably explains the observed performance variations. Further interpretation of this causal structure provides substantial scientific insights beyond simple numerical rankings: specifically, we reveal a clear causal direction starting from general problem-solving capabilities, advancing through instruction-following proficiency, and culminating in mathematical reasoning ability. Our results underscore the essential role of carefully controlling base model variations during evaluation, a step critical to accurately uncovering the underlying causal relationships among latent model capabilities. |
|
Think before You Simulate: Symbolic Reasoning to Orchestrate Neural Computation for Counterfactual Question Answering |
GitHub |
Causal and temporal reasoning about video dynamics is a challenging problem. While neuro-symbolic models that combine symbolic reasoning with neural-based perception and prediction have shown promise, they exhibit limitations, especially in answering counterfactual questions. This paper introduces a method to enhance a neuro-symbolic model for counterfactual reasoning, leveraging symbolic reasoning about causal relations among events. We define the notion of a causal graph to represent such relations and use Answer Set Programming (ASP), a declarative logic programming method, to find how to coordinate perception and simulation modules. We validate the effectiveness of our approach on two benchmarks, CLEVRER and CRAFT. Our enhancement achieves state-of-the-art performance on the CLEVRER challenge, significantly outperforming existing models. In the case of the CRAFT benchmark, we leverage a large pre-trained language model, such as GPT-3.5 and GPT-4, as a proxy for a dynamics simulator. Our findings show that this method can further improve its performance on counterfactual questions by providing alternative prompts instructed by symbolic causal reasoning. |
|
Efficient Part-level 3D Object Generation via Dual Volume Packing |
GitHub |
Recent progress in 3D object generation has greatly improved both the quality and efficiency. However, most existing methods generate a single mesh with all parts fused together, which limits the ability to edit or manipulate individual parts. A key challenge is that different objects may have a varying number of parts. To address this, we propose a new end-to-end framework for part-level 3D object generation. Given a single input image, our method generates high-quality 3D objects with an arbitrary number of complete and semantically meaningful parts. We introduce a dual volume packing strategy that organizes all parts into two complementary volumes, allowing for the creation of complete and interleaved parts that assemble into the final object. Experiments show that our model achieves better quality, diversity, and generalization than previous image-based part-level generation methods. |
|
Step-by-step Instructions and a Simple Tabular Output Format Improve the Dependency Parsing Accuracy of LLMs |
GitHub |
Recent advances in large language models (LLMs) have enabled impressive performance in various tasks. However, standard prompting often struggles to produce structurally valid and accurate outputs, especially in dependency parsing. We propose a novel step-by-step instruction strategy, where universal part-of-speech tagging precedes the prediction of syntactic heads and dependency labels, and a simplified CoNLL-U like output format, our method achieves state-of-the-art accuracy on Universal Dependencies datasets across 17 languages without hallucination or contamination. We further show that multilingual fine-tuning simultaneously improves cross-language generalization performance. Our results highlight the effectiveness of explicit reasoning steps in LLM-based parsing and offer a scalable, format-consistent alternative to bracket-based approaches. |
|
Gender Bias in English-to-Greek Machine Translation |
GitHub |
As the demand for inclusive language increases, concern has grown over the susceptibility of machine translation (MT) systems to reinforce gender stereotypes. This study investigates gender bias in two commercial MT systems, Google Translate and DeepL, focusing on the understudied English-to-Greek language pair. We address three aspects of gender bias: i) male bias, ii) occupational stereotyping, and iii) errors in anti-stereotypical translations. Additionally, we explore the potential of prompted GPT-4o as a bias mitigation tool that provides both gender-explicit and gender-neutral alternatives when necessary. To achieve this, we introduce GendEL, a manually crafted bilingual dataset of 240 gender-ambiguous and unambiguous sentences that feature stereotypical occupational nouns and adjectives. We find persistent gender bias in translations by both MT systems; while they perform well in cases where gender is explicitly defined, with DeepL outperforming both Google Translate and GPT-4o in feminine gender-unambiguous sentences, they are far from producing gender-inclusive or neutral translations when the gender is unspecified. GPT-4o shows promise, generating appropriate gendered and neutral alternatives for most ambiguous cases, though residual biases remain evident. |
|
Inverting Black-Box Face Recognition Systems via Zero-Order Optimization in Eigenface Space |
GitHub |
Reconstructing facial images from black-box recognition models poses a significant privacy threat. While many methods require access to embeddings, we address the more challenging scenario of model inversion using only similarity scores. This paper introduces DarkerBB, a novel approach that reconstructs color faces by performing zero-order optimization within a PCA-derived eigenface space. Despite this highly limited information, experiments on LFW, AgeDB-30, and CFP-FP benchmarks demonstrate that DarkerBB achieves state-of-the-art verification accuracies in the similarity-only setting, with competitive query efficiency. |
|
Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering |
GitHub |
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains, but their reliability is hindered by the outdated knowledge and hallucinations. Retrieval-Augmented Generation mitigates these issues by grounding LLMs with external knowledge; however, most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning. Knowledge graphs, which represent facts as relational triples, offer a more structured and compact alternative. Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering (KGQA), with a significant proportion adopting the retrieve-then-reasoning paradigm. In this framework, graph-based retrievers have demonstrated strong empirical performance, yet they still face challenges in generalization ability. In this work, we propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA. RAPL addresses these limitations through three aspects: (1) a two-stage labeling strategy that combines heuristic signals with parametric models to provide causally grounded supervision; (2) a model-agnostic graph transformation approach to capture both intra- and inter-triple interactions, thereby enhancing representational capacity; and (3) a path-based reasoning strategy that facilitates learning from the injected rational knowledge, and supports downstream reasoner through structured inputs. Empirically, RAPL outperforms state-of-the-art methods by $2.66\%-20.34\%$, and significantly reduces the performance gap between smaller and more powerful LLM-based reasoners, as well as the gap under cross-dataset settings, highlighting its superior retrieval capability and generalizability. Codes are available at: https://github.com/tianyao-aka/RAPL. |
|
Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing |
GitHub |
As textual reasoning with large language models (LLMs) has advanced significantly, there has been growing interest in enhancing the multimodal reasoning capabilities of large vision-language models (LVLMs). However, existing methods primarily approach multimodal reasoning in a straightforward, text-centric manner, where both reasoning and answer derivation are conducted purely through text, with the only difference being the presence of multimodal input. As a result, these methods often encounter fundamental limitations in spatial reasoning tasks that demand precise geometric understanding and continuous spatial tracking-capabilities that humans achieve through mental visualization and manipulation. To address the limitations, we propose drawing to reason in space, a novel paradigm that enables LVLMs to reason through elementary drawing operations in the visual space. By equipping models with basic drawing operations, including annotating bounding boxes and drawing auxiliary lines, we empower them to express and analyze spatial relationships through direct visual manipulation, meanwhile avoiding the performance ceiling imposed by specialized perception tools in previous tool-integrated reasoning approaches. To cultivate this capability, we develop a three-stage training framework: cold-start training with synthetic data to establish basic drawing abilities, reflective rejection sampling to enhance self-reflection behaviors, and reinforcement learning to directly optimize for target rewards. Extensive experiments demonstrate that our model, named VILASR, consistently outperforms existing methods across diverse spatial reasoning benchmarks, involving maze navigation, static spatial reasoning, video-based reasoning, and multi-view-based reasoning tasks, with an average improvement of 18.4%. |
|
EquiCaps: Predictor-Free Pose-Aware Pre-Trained Capsule Networks |
GitHub |
Learning self-supervised representations that are invariant and equivariant to transformations is crucial for advancing beyond traditional visual classification tasks. However, many methods rely on predictor architectures to encode equivariance, despite evidence that architectural choices, such as capsule networks, inherently excel at learning interpretable pose-aware representations. To explore this, we introduce EquiCaps (Equivariant Capsule Network), a capsule-based approach to pose-aware self-supervision that eliminates the need for a specialised predictor for enforcing equivariance. Instead, we leverage the intrinsic pose-awareness capabilities of capsules to improve performance in pose estimation tasks. To further challenge our assumptions, we increase task complexity via multi-geometric transformations to enable a more thorough evaluation of invariance and equivariance by introducing 3DIEBench-T, an extension of a 3D object-rendering benchmark dataset. Empirical results demonstrate that EquiCaps outperforms prior state-of-the-art equivariant methods on rotation prediction, achieving a supervised-level $R^2$ of 0.78 on the 3DIEBench rotation prediction benchmark and improving upon SIE and CapsIE by 0.05 and 0.04 $R^2$, respectively. Moreover, in contrast to non-capsule-based equivariant approaches, EquiCaps maintains robust equivariant performance under combined geometric transformations, underscoring its generalisation capabilities and the promise of predictor-free capsule architectures. |
|
IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments |
GitHub |
We present IntPhys 2, a video benchmark designed to evaluate the intuitive physics understanding of deep learning models. Building on the original IntPhys benchmark, IntPhys 2 focuses on four core principles related to macroscopic objects: Permanence, Immutability, Spatio-Temporal Continuity, and Solidity. These conditions are inspired by research into intuitive physical understanding emerging during early childhood. IntPhys 2 offers a comprehensive suite of tests, based on the violation of expectation framework, that challenge models to differentiate between possible and impossible events within controlled and diverse virtual environments. Alongside the benchmark, we provide performance evaluations of several state-of-the-art models. Our findings indicate that while these models demonstrate basic visual understanding, they face significant challenges in grasping intuitive physics across the four principles in complex scenes, with most models performing at chance levels (50%), in stark contrast to human performance, which achieves near-perfect accuracy. This underscores the gap between current models and human-like intuitive physics understanding, highlighting the need for advancements in model architectures and training methodologies. |
|
GLGENN: A Novel Parameter-Light Equivariant Neural Networks Architecture Based on Clifford Geometric Algebras |
GitHub |
We propose, implement, and compare with competitors a new architecture of equivariant neural networks based on geometric (Clifford) algebras: Generalized Lipschitz Group Equivariant Neural Networks (GLGENN). These networks are equivariant to all pseudo-orthogonal transformations, including rotations and reflections, of a vector space with any non-degenerate or degenerate symmetric bilinear form. We propose a weight-sharing parametrization technique that takes into account the fundamental structures and operations of geometric algebras. Due to this technique, GLGENN architecture is parameter-light and has less tendency to overfitting than baseline equivariant models. GLGENN outperforms or matches competitors on several benchmarking equivariant tasks, including estimation of an equivariant function and a convex hull experiment, while using significantly fewer optimizable parameters. |
|
LLMail-Inject: A Dataset from a Realistic Adaptive Prompt Injection Challenge |
GitHub |
Indirect Prompt Injection attacks exploit the inherent limitation of Large Language Models (LLMs) to distinguish between instructions and data in their inputs. Despite numerous defense proposals, the systematic evaluation against adaptive adversaries remains limited, even when successful attacks can have wide security and privacy implications, and many real-world LLM-based applications remain vulnerable. We present the results of LLMail-Inject, a public challenge simulating a realistic scenario in which participants adaptively attempted to inject malicious instructions into emails in order to trigger unauthorized tool calls in an LLM-based email assistant. The challenge spanned multiple defense strategies, LLM architectures, and retrieval configurations, resulting in a dataset of 208,095 unique attack submissions from 839 participants. We release the challenge code, the full dataset of submissions, and our analysis demonstrating how this data can provide new insights into the instruction-data separation problem. We hope this will serve as a foundation for future research towards practical structural solutions to prompt injection. |
|
Query-Focused Retrieval Heads Improve Long-Context Reasoning and Re-ranking |
GitHub |
Recent work has identified retrieval heads (Wu et al., 2025b), a subset of attention heads responsible for retrieving salient information in long-context language models (LMs), as measured by their copy-paste behavior in Needle-in-a-Haystack tasks. In this paper, we introduce QRHEAD (Query-Focused Retrieval Head), an improved set of attention heads that enhance retrieval from long context. We identify QRHEAD by aggregating attention scores with respect to the input query, using a handful of examples from real-world tasks (e.g., long-context QA). We further introduce QR- RETRIEVER, an efficient and effective retriever that uses the accumulated attention mass of QRHEAD as retrieval scores. We use QR- RETRIEVER for long-context reasoning by selecting the most relevant parts with the highest retrieval scores. On multi-hop reasoning tasks LongMemEval and CLIPPER, this yields over 10% performance gains over full context and outperforms strong dense retrievers. We also evaluate QRRETRIEVER as a re-ranker on the BEIR benchmark and find that it achieves strong zero-shot performance, outperforming other LLM-based re-rankers such as RankGPT. Further analysis shows that both the querycontext attention scoring and task selection are crucial for identifying QRHEAD with strong downstream utility. Overall, our work contributes a general-purpose retriever and offers interpretability insights into the long-context capabilities of LMs. |
|
VerIF: Verification Engineering for Reinforcement Learning in Instruction Following |
GitHub |
Reinforcement learning with verifiable rewards (RLVR) has become a key technique for enhancing large language models (LLMs), with verification engineering playing a central role. However, best practices for RL in instruction following remain underexplored. In this work, we explore the verification challenge in RL for instruction following and propose VerIF, a verification method that combines rule-based code verification with LLM-based verification from a large reasoning model (e.g., QwQ-32B). To support this approach, we construct a high-quality instruction-following dataset, VerInstruct, containing approximately 22,000 instances with associated verification signals. We apply RL training with VerIF to two models, achieving significant improvements across several representative instruction-following benchmarks. The trained models reach state-of-the-art performance among models of comparable size and generalize well to unseen constraints. We further observe that their general capabilities remain unaffected, suggesting that RL with VerIF can be integrated into existing RL recipes to enhance overall model performance. We have released our datasets, codes, and models to facilitate future research at https://github.com/THU-KEG/VerIF. |
|
Training-Free Voice Conversion with Factorized Optimal Transport |
GitHub |
This paper introduces Factorized MKL-VC, a training-free modification for kNN-VC pipeline. In contrast with original pipeline, our algorithm performs high quality any-to-any cross-lingual voice conversion with only 5 second of reference audio. MKL-VC replaces kNN regression with a factorized optimal transport map in WavLM embedding subspaces, derived from Monge-Kantorovich Linear solution. Factorization addresses non-uniform variance across dimensions, ensuring effective feature transformation. Experiments on LibriSpeech and FLEURS datasets show MKL-VC significantly improves content preservation and robustness with short reference audio, outperforming kNN-VC. MKL-VC achieves performance comparable to FACodec, especially in cross-lingual voice conversion domain. |
|
ComfyUI-R1: Exploring Reasoning Models for Workflow Generation |
GitHub |
AI-generated content has evolved from monolithic models to modular workflows, particularly on platforms like ComfyUI, enabling customization in creative pipelines. However, crafting effective workflows requires great expertise to orchestrate numerous specialized components, presenting a steep learning curve for users. To address this challenge, we introduce ComfyUI-R1, the first large reasoning model for automated workflow generation. Starting with our curated dataset of 4K workflows, we construct long chain-of-thought (CoT) reasoning data, including node selection, workflow planning, and code-level workflow representation. ComfyUI-R1 is trained through a two-stage framework: (1) CoT fine-tuning for cold start, adapting models to the ComfyUI domain; (2) reinforcement learning for incentivizing reasoning capability, guided by a fine-grained rule-metric hybrid reward, ensuring format validity, structural integrity, and node-level fidelity. Experiments show that our 7B-parameter model achieves a 97\% format validity rate, along with high pass rate, node-level and graph-level F1 scores, significantly surpassing prior state-of-the-art methods that employ leading closed-source models such as GPT-4o and Claude series. Further analysis highlights the critical role of the reasoning process and the advantage of transforming workflows into code. Qualitative comparison reveals our strength in synthesizing intricate workflows with diverse nodes, underscoring the potential of long CoT reasoning in AI art creation. |
|
Unmasking real-world audio deepfakes: A data-centric approach |
GitHub |
The growing prevalence of real-world deepfakes presents a critical challenge for existing detection systems, which are often evaluated on datasets collected just for scientific purposes. To address this gap, we introduce a novel dataset of real-world audio deepfakes. Our analysis reveals that these real-world examples pose significant challenges, even for the most performant detection models. Rather than increasing model complexity or exhaustively search for a better alternative, in this work we focus on a data-centric paradigm, employing strategies like dataset curation, pruning, and augmentation to improve model robustness and generalization. Through these methods, we achieve a 55% relative reduction in EER on the In-the-Wild dataset, reaching an absolute EER of 1.7%, and a 63% reduction on our newly proposed real-world deepfakes dataset, AI4T. These results highlight the transformative potential of data-centric approaches in enhancing deepfake detection for real-world applications. Code and data available at: https://github.com/davidcombei/AI4T. |
|
Apollo: A Posteriori Label-Only Membership Inference Attack Towards Machine Unlearning |
GitHub |
Machine Unlearning (MU) aims to update Machine Learning (ML) models following requests to remove training samples and their influences on a trained model efficiently without retraining the original ML model from scratch. While MU itself has been employed to provide privacy protection and regulatory compliance, it can also increase the attack surface of the model. Existing privacy inference attacks towards MU that aim to infer properties of the unlearned set rely on the weaker threat model that assumes the attacker has access to both the unlearned model and the original model, limiting their feasibility toward real-life scenarios. We propose a novel privacy attack, A Posteriori Label-Only Membership Inference Attack towards MU, Apollo, that infers whether a data sample has been unlearned, following a strict threat model where an adversary has access to the label-output of the unlearned model only. We demonstrate that our proposed attack, while requiring less access to the target model compared to previous attacks, can achieve relatively high precision on the membership status of the unlearned samples. |
|
Urban1960SatSeg: Unsupervised Semantic Segmentation of Mid-20$^{th}$ century Urban Landscapes with Satellite Imageries |
GitHub |
Historical satellite imagery, such as mid-20$^{th}$ century Keyhole data, offers rare insights into understanding early urban development and long-term transformation. However, severe quality degradation (e.g., distortion, misalignment, and spectral scarcity) and annotation absence have long hindered semantic segmentation on such historical RS imagery. To bridge this gap and enhance understanding of urban development, we introduce $\textbf{Urban1960SatBench}$, an annotated segmentation dataset based on historical satellite imagery with the earliest observation time among all existing segmentation datasets, along with a benchmark framework for unsupervised segmentation tasks, $\textbf{Urban1960SatUSM}$. First, $\textbf{Urban1960SatBench}$ serves as a novel, expertly annotated semantic segmentation dataset built on mid-20$^{th}$ century Keyhole imagery, covering 1,240 km$^2$ and key urban classes (buildings, roads, farmland, water). As the earliest segmentation dataset of its kind, it provides a pioneering benchmark for historical urban understanding. Second, $\textbf{Urban1960SatUSM}$(Unsupervised Segmentation Model) is a novel unsupervised semantic segmentation framework for historical RS imagery. It employs a confidence-aware alignment mechanism and focal-confidence loss based on a self-supervised learning architecture, which generates robust pseudo-labels and adaptively prioritizes prediction difficulty and label reliability to improve unsupervised segmentation on noisy historical data without manual supervision. Experiments show Urban1960SatUSM significantly outperforms existing unsupervised segmentation methods on Urban1960SatSeg for segmenting historical urban scenes, promising in paving the way for quantitative studies of long-term urban change using modern computer vision. Our benchmark and supplementary material are available at https://github.com/Tianxiang-Hao/Urban1960SatSeg. |
|
Noise Conditional Variational Score Distillation |
GitHub |
We propose Noise Conditional Variational Score Distillation (NCVSD), a novel method for distilling pretrained diffusion models into generative denoisers. We achieve this by revealing that the unconditional score function implicitly characterizes the score function of denoising posterior distributions. By integrating this insight into the Variational Score Distillation (VSD) framework, we enable scalable learning of generative denoisers capable of approximating samples from the denoising posterior distribution across a wide range of noise levels. The proposed generative denoisers exhibit desirable properties that allow fast generation while preserve the benefit of iterative refinement: (1) fast one-step generation through sampling from pure Gaussian noise at high noise levels; (2) improved sample quality by scaling the test-time compute with multi-step sampling; and (3) zero-shot probabilistic inference for flexible and controllable sampling. We evaluate NCVSD through extensive experiments, including class-conditional image generation and inverse problem solving. By scaling the test-time compute, our method outperforms teacher diffusion models and is on par with consistency models of larger sizes. Additionally, with significantly fewer NFEs than diffusion-based methods, we achieve record-breaking LPIPS on inverse problems. |
|
ReID5o: Achieving Omni Multi-modal Person Re-identification in a Single Model |
GitHub |
In real-word scenarios, person re-identification (ReID) expects to identify a person-of-interest via the descriptive query, regardless of whether the query is a single modality or a combination of multiple modalities. However, existing methods and datasets remain constrained to limited modalities, failing to meet this requirement. Therefore, we investigate a new challenging problem called Omni Multi-modal Person Re-identification (OM-ReID), which aims to achieve effective retrieval with varying multi-modal queries. To address dataset scarcity, we construct ORBench, the first high-quality multi-modal dataset comprising 1,000 unique identities across five modalities: RGB, infrared, color pencil, sketch, and textual description. This dataset also has significant superiority in terms of diversity, such as the painting perspectives and textual information. It could serve as an ideal platform for follow-up investigations in OM-ReID. Moreover, we propose ReID5o, a novel multi-modal learning framework for person ReID. It enables synergistic fusion and cross-modal alignment of arbitrary modality combinations in a single model, with a unified encoding and multi-expert routing mechanism proposed. Extensive experiments verify the advancement and practicality of our ORBench. A wide range of possible models have been evaluated and compared on it, and our proposed ReID5o model gives the best performance. The dataset and code will be made publicly available at https://github.com/Zplusdragon/ReID5o_ORBench. |
|
ECAM: A Contrastive Learning Approach to Avoid Environmental Collision in Trajectory Forecasting |
GitHub |
Human trajectory forecasting is crucial in applications such as autonomous driving, robotics and surveillance. Accurate forecasting requires models to consider various factors, including social interactions, multi-modal predictions, pedestrian intention and environmental context. While existing methods account for these factors, they often overlook the impact of the environment, which leads to collisions with obstacles. This paper introduces ECAM (Environmental Collision Avoidance Module), a contrastive learning-based module to enhance collision avoidance ability with the environment. The proposed module can be integrated into existing trajectory forecasting models, improving their ability to generate collision-free predictions. We evaluate our method on the ETH/UCY dataset and quantitatively and qualitatively demonstrate its collision avoidance capabilities. Our experiments show that state-of-the-art methods significantly reduce (-40/50%) the collision rate when integrated with the proposed module. The code is available at https://github.com/CVML-CFU/ECAM. |
|
ScaleLSD: Scalable Deep Line Segment Detection Streamlined |
GitHub |
This paper studies the problem of Line Segment Detection (LSD) for the characterization of line geometry in images, with the aim of learning a domain-agnostic robust LSD model that works well for any natural images. With the focus of scalable self-supervised learning of LSD, we revisit and streamline the fundamental designs of (deep and non-deep) LSD approaches to have a high-performing and efficient LSD learner, dubbed as ScaleLSD, for the curation of line geometry at scale from over 10M unlabeled real-world images. Our ScaleLSD works very well to detect much more number of line segments from any natural images even than the pioneered non-deep LSD approach, having a more complete and accurate geometric characterization of images using line segments. Experimentally, our proposed ScaleLSD is comprehensively testified under zero-shot protocols in detection performance, single-view 3D geometry estimation, two-view line segment matching, and multiview 3D line mapping, all with excellent performance obtained. Based on the thorough evaluation, our ScaleLSD is observed to be the first deep approach that outperforms the pioneered non-deep LSD in all aspects we have tested, significantly expanding and reinforcing the versatility of the line geometry of images. Code and Models are available at https://github.com/ant-research/scalelsd |
|
OmniDRCA: Parallel Speech-Text Foundation Model via Dual-Resolution Speech Representations and Contrastive Alignment |
GitHub |
Recent studies on end-to-end speech generation with large language models (LLMs) have attracted significant community attention, with multiple works extending text-based LLMs to generate discrete speech tokens. Existing approaches primarily fall into two categories: (1) Methods that generate discrete speech tokens independently without incorporating them into the LLM's autoregressive process, resulting in text generation being unaware of concurrent speech synthesis. (2) Models that generate interleaved or parallel speech-text tokens through joint autoregressive modeling, enabling mutual modality awareness during generation. This paper presents OmniDRCA, a parallel speech-text foundation model based on joint autoregressive modeling, featuring dual-resolution speech representations and contrastive cross-modal alignment. Our approach processes speech and text representations in parallel while enhancing audio comprehension through contrastive alignment. Experimental results on Spoken Question Answering benchmarks demonstrate that OmniDRCA establishes new state-of-the-art (SOTA) performance among parallel joint speech-text modeling based foundation models, and achieves competitive performance compared to interleaved models. Additionally, we explore the potential of extending the framework to full-duplex conversational scenarios. |
|
Outside Knowledge Conversational Video (OKCV) Dataset -- Dialoguing over Videos |
GitHub |
In outside knowledge visual question answering (OK-VQA), the model must identify relevant visual information within an image and incorporate external knowledge to accurately respond to a question. Extending this task to a visually grounded dialogue setting based on videos, a conversational model must both recognize pertinent visual details over time and answer questions where the required information is not necessarily present in the visual information. Moreover, the context of the overall conversation must be considered for the subsequent dialogue. To explore this task, we introduce a dataset comprised of $2,017$ videos with $5,986$ human-annotated dialogues consisting of $40,954$ interleaved dialogue turns. While the dialogue context is visually grounded in specific video segments, the questions further require external knowledge that is not visually present. Thus, the model not only has to identify relevant video parts but also leverage external knowledge to converse within the dialogue. We further provide several baselines evaluated on our dataset and show future challenges associated with this task. The dataset is made publicly available here: https://github.com/c-patsch/OKCV. |
|
Structural-Spectral Graph Convolution with Evidential Edge Learning for Hyperspectral Image Clustering |
GitHub |
Hyperspectral image (HSI) clustering assigns similar pixels to the same class without any annotations, which is an important yet challenging task. For large-scale HSIs, most methods rely on superpixel segmentation and perform superpixel-level clustering based on graph neural networks (GNNs). However, existing GNNs cannot fully exploit the spectral information of the input HSI, and the inaccurate superpixel topological graph may lead to the confusion of different class semantics during information aggregation. To address these challenges, we first propose a structural-spectral graph convolutional operator (SSGCO) tailored for graph-structured HSI superpixels to improve their representation quality through the co-extraction of spatial and spectral features. Second, we propose an evidence-guided adaptive edge learning (EGAEL) module that adaptively predicts and refines edge weights in the superpixel topological graph. We integrate the proposed method into a contrastive learning framework to achieve clustering, where representation learning and clustering are simultaneously conducted. Experiments demonstrate that the proposed method improves clustering accuracy by 2.61%, 6.06%, 4.96% and 3.15% over the best compared methods on four HSI datasets. Our code is available at https://github.com/jhqi/SSGCO-EGAEL. |
|
Discrete Scale-invariant Metric Learning for Efficient Collaborative Filtering |
GitHub |
Metric learning has attracted extensive interest for its ability to provide personalized recommendations based on the importance of observed user-item interactions. Current metric learning methods aim to push negative items away from the corresponding users and positive items by an absolute geometrical distance margin. However, items may come from imbalanced categories with different intra-class variations. Thus, the absolute distance margin may not be ideal for estimating the difference between user preferences over imbalanced items. To this end, we propose a new method, named discrete scale-invariant metric learning (DSIML), by adding binary constraints to users and items, which maps users and items into binary codes of a shared Hamming subspace to speed up the online recommendation. Specifically, we firstly propose a scale-invariant margin based on angles at the negative item points in the shared Hamming subspace. Then, we derive a scale-invariant triple hinge loss based on the margin. To capture more preference difference information, we integrate a pairwise ranking loss into the scale-invariant loss in the proposed model. Due to the difficulty of directly optimizing the mixed integer optimization problem formulated with \textit{log-sum-exp} functions, we seek to optimize its variational quadratic upper bound and learn hash codes with an alternating optimization strategy. Experiments on benchmark datasets clearly show that our proposed method is superior to competitive metric learning and hashing-based baselines for recommender systems. The implementation code is available at https://github.com/AnonyFeb/dsml. |
|
How much is too much? Measuring divergence from Benford's Law with the Equivalent Contamination Proportion (ECP) |
GitHub |
Conformity with Benford's Law is widely used to detect irregularities in numerical datasets, particularly in accounting, finance, and economics. However, the statistical tools commonly used for this purpose (such as Chi-squared, MAD, or KS) suffer from three key limitations: sensitivity to sample size, lack of interpretability of their scale, and the absence of a common metric that allows for comparison across different statistics. This paper introduces the Equivalent Contamination Proportion (ECP) to address these issues. Defined as the proportion of contamination in a hypothetical Benford-conforming sample such that the expected value of the divergence statistic matches the one observed in the actual data, the ECP provides a continuous and interpretable measure of deviation (ranging from 0 to 1), is robust to sample size, and offers consistent results across different divergence statistics under mild conditions. Closed-form and simulation-based methods are developed for estimating the ECP, and, through a retrospective analysis of three influential studies, it is shown how the ECP can complement the information provided by traditional divergence statistics and enhance the interpretation of results. |
|
CausalVQA: A Physically Grounded Causal Reasoning Benchmark for Video Models |
GitHub |
We introduce CausalVQA, a benchmark dataset for video question answering (VQA) composed of question-answer pairs that probe models' understanding of causality in the physical world. Existing VQA benchmarks either tend to focus on surface perceptual understanding of real-world videos, or on narrow physical reasoning questions created using simulation environments. CausalVQA fills an important gap by presenting challenging questions that are grounded in real-world scenarios, while focusing on models' ability to predict the likely outcomes of different actions and events through five question types: counterfactual, hypothetical, anticipation, planning and descriptive. We designed quality control mechanisms that prevent models from exploiting trivial shortcuts, requiring models to base their answers on deep visual understanding instead of linguistic cues. We find that current frontier multimodal models fall substantially below human performance on the benchmark, especially on anticipation and hypothetical questions. This highlights a challenge for current systems to leverage spatial-temporal reasoning, understanding of physical principles, and comprehension of possible alternatives to make accurate predictions in real-world settings. |
|
MEDUSA: A Multimodal Deep Fusion Multi-Stage Training Framework for Speech Emotion Recognition in Naturalistic Conditions |
GitHub |
SER is a challenging task due to the subjective nature of human emotions and their uneven representation under naturalistic conditions. We propose MEDUSA, a multimodal framework with a four-stage training pipeline, which effectively handles class imbalance and emotion ambiguity. The first two stages train an ensemble of classifiers that utilize DeepSER, a novel extension of a deep cross-modal transformer fusion mechanism from pretrained self-supervised acoustic and linguistic representations. Manifold MixUp is employed for further regularization. The last two stages optimize a trainable meta-classifier that combines the ensemble predictions. Our training approach incorporates human annotation scores as soft targets, coupled with balanced data sampling and multitask learning. MEDUSA ranked 1st in Task 1: Categorical Emotion Recognition in the Interspeech 2025: Speech Emotion Recognition in Naturalistic Conditions Challenge. |
|
PersonaLens: A Benchmark for Personalization Evaluation in Conversational AI Assistants |
GitHub |
Large language models (LLMs) have advanced conversational AI assistants. However, systematically evaluating how well these assistants apply personalization--adapting to individual user preferences while completing tasks--remains challenging. Existing personalization benchmarks focus on chit-chat, non-conversational tasks, or narrow domains, failing to capture the complexities of personalized task-oriented assistance. To address this, we introduce PersonaLens, a comprehensive benchmark for evaluating personalization in task-oriented AI assistants. Our benchmark features diverse user profiles equipped with rich preferences and interaction histories, along with two specialized LLM-based agents: a user agent that engages in realistic task-oriented dialogues with AI assistants, and a judge agent that employs the LLM-as-a-Judge paradigm to assess personalization, response quality, and task success. Through extensive experiments with current LLM assistants across diverse tasks, we reveal significant variability in their personalization capabilities, providing crucial insights for advancing conversational AI systems. |
|
The Four Color Theorem for Cell Instance Segmentation |
GitHub |
Cell instance segmentation is critical to analyzing biomedical images, yet accurately distinguishing tightly touching cells remains a persistent challenge. Existing instance segmentation frameworks, including detection-based, contour-based, and distance mapping-based approaches, have made significant progress, but balancing model performance with computational efficiency remains an open problem. In this paper, we propose a novel cell instance segmentation method inspired by the four-color theorem. By conceptualizing cells as countries and tissues as oceans, we introduce a four-color encoding scheme that ensures adjacent instances receive distinct labels. This reformulation transforms instance segmentation into a constrained semantic segmentation problem with only four predicted classes, substantially simplifying the instance differentiation process. To solve the training instability caused by the non-uniqueness of four-color encoding, we design an asymptotic training strategy and encoding transformation method. Extensive experiments on various modes demonstrate our approach achieves state-of-the-art performance. The code is available at https://github.com/zhangye-zoe/FCIS. |
|
Adding simple structure at inference improves Vision-Language Compositionality |
GitHub |
Dual encoder Vision-Language Models (VLM) such as CLIP are widely used for image-text retrieval tasks. However, those models struggle with compositionality, showing a bag-of-words-like behavior that limits their retrieval performance. Many different training approaches have been proposed to improve the vision-language compositionality capabilities of those models. In comparison, inference-time techniques have received little attention. In this paper, we propose to add simple structure at inference, where, given an image and a caption: i) we divide the image into different smaller crops, ii) we extract text segments, capturing objects, attributes and relations, iii) using a VLM, we find the image crops that better align with text segments obtaining matches, and iv) we compute the final image-text similarity aggregating the individual similarities of the matches. Based on various popular dual encoder VLMs, we evaluate our approach in controlled and natural datasets for VL compositionality. We find that our approach consistently improves the performance of evaluated VLMs without any training, which shows the potential of inference-time techniques. The results are especially good for attribute-object binding as shown in the controlled dataset. As a result of an extensive analysis: i) we show that processing image crops is actually essential for the observed gains in performance, and ii) we identify specific areas to further improve inference-time approaches. |
|
Inv-Entropy: A Fully Probabilistic Framework for Uncertainty Quantification in Language Models |
GitHub |
Large language models (LLMs) have transformed natural language processing, but their reliable deployment requires effective uncertainty quantification (UQ). Existing UQ methods are often heuristic and lack a probabilistic foundation. This paper begins by providing a theoretical justification for the role of perturbations in UQ for LLMs. We then introduce a dual random walk perspective, modeling input-output pairs as two Markov chains with transition probabilities defined by semantic similarity. Building on this, we propose a fully probabilistic framework based on an inverse model, which quantifies uncertainty by evaluating the diversity of the input space conditioned on a given output through systematic perturbations. Within this framework, we define a new uncertainty measure, Inv-Entropy. A key strength of our framework is its flexibility: it supports various definitions of uncertainty measures, embeddings, perturbation strategies, and similarity metrics. We also propose GAAP, a perturbation algorithm based on genetic algorithms, which enhances the diversity of sampled inputs. In addition, we introduce a new evaluation metric, Temperature Sensitivity of Uncertainty (TSU), which directly assesses uncertainty without relying on correctness as a proxy. Extensive experiments demonstrate that Inv-Entropy outperforms existing semantic UQ methods. The code to reproduce the results can be found at https://github.com/UMDataScienceLab/Uncertainty-Quantification-for-LLMs. |
|
CINeMA: Conditional Implicit Neural Multi-Modal Atlas for a Spatio-Temporal Representation of the Perinatal Brain |
GitHub |
Magnetic resonance imaging of fetal and neonatal brains reveals rapid neurodevelopment marked by substantial anatomical changes unfolding within days. Studying this critical stage of the developing human brain, therefore, requires accurate brain models-referred to as atlases-of high spatial and temporal resolution. To meet these demands, established traditional atlases and recently proposed deep learning-based methods rely on large and comprehensive datasets. This poses a major challenge for studying brains in the presence of pathologies for which data remains scarce. We address this limitation with CINeMA (Conditional Implicit Neural Multi-Modal Atlas), a novel framework for creating high-resolution, spatio-temporal, multimodal brain atlases, suitable for low-data settings. Unlike established methods, CINeMA operates in latent space, avoiding compute-intensive image registration and reducing atlas construction times from days to minutes. Furthermore, it enables flexible conditioning on anatomical features including GA, birth age, and pathologies like ventriculomegaly (VM) and agenesis of the corpus callosum (ACC). CINeMA supports downstream tasks such as tissue segmentation and age prediction whereas its generative properties enable synthetic data creation and anatomically informed data augmentation. Surpassing state-of-the-art methods in accuracy, efficiency, and versatility, CINeMA represents a powerful tool for advancing brain research. We release the code and atlases at https://github.com/m-dannecker/CINeMA. |
|
Sampling Theory for Super-Resolution with Implicit Neural Representations |
GitHub |
Implicit neural representations (INRs) have emerged as a powerful tool for solving inverse problems in computer vision and computational imaging. INRs represent images as continuous domain functions realized by a neural network taking spatial coordinates as inputs. However, unlike traditional pixel representations, little is known about the sample complexity of estimating images using INRs in the context of linear inverse problems. Towards this end, we study the sampling requirements for recovery of a continuous domain image from its low-pass Fourier samples by fitting a single hidden-layer INR with ReLU activation and a Fourier features layer using a generalized form of weight decay regularization. Our key insight is to relate minimizers of this non-convex parameter space optimization problem to minimizers of a convex penalty defined over an infinite-dimensional space of measures. We identify a sufficient number of Fourier samples for which an image realized by an INR is exactly recoverable by solving the INR training problem. To validate our theory, we empirically assess the probability of achieving exact recovery of images realized by low-width single hidden-layer INRs, and illustrate the performance of INRs on super-resolution recovery of continuous domain phantom images. |
|
Hearing Hands: Generating Sounds from Physical Interactions in 3D Scenes |
GitHub |
We study the problem of making 3D scene reconstructions interactive by asking the following question: can we predict the sounds of human hands physically interacting with a scene? First, we record a video of a human manipulating objects within a 3D scene using their hands. We then use these action-sound pairs to train a rectified flow model to map 3D hand trajectories to their corresponding audio. At test time, a user can query the model for other actions, parameterized as sequences of hand poses, to estimate their corresponding sounds. In our experiments, we find that our generated sounds accurately convey material properties and actions, and that they are often indistinguishable to human observers from real sounds. Project page: https://www.yimingdou.com/hearing_hands/ |
|
Guided Graph Compression for Quantum Graph Neural Networks |
GitHub |
Graph Neural Networks (GNNs) are effective for processing graph-structured data but face challenges with large graphs due to high memory requirements and inefficient sparse matrix operations on GPUs. Quantum Computing (QC) offers a promising avenue to address these issues and inspires new algorithmic approaches. In particular, Quantum Graph Neural Networks (QGNNs) have been explored in recent literature. However, current quantum hardware limits the dimension of the data that can be effectively encoded. Existing approaches either simplify datasets manually or use artificial graph datasets. This work introduces the Guided Graph Compression (GGC) framework, which uses a graph autoencoder to reduce both the number of nodes and the dimensionality of node features. The compression is guided to enhance the performance of a downstream classification task, which can be applied either with a quantum or a classical classifier. The framework is evaluated on the Jet Tagging task, a classification problem of fundamental importance in high energy physics that involves distinguishing particle jets initiated by quarks from those by gluons. The GGC is compared against using the autoencoder as a standalone preprocessing step and against a baseline classical GNN classifier. Our numerical results demonstrate that GGC outperforms both alternatives, while also facilitating the testing of novel QGNN ansatzes on realistic datasets. |
|
On the Similarities of Embeddings in Contrastive Learning |
GitHub |
Contrastive learning (CL) operates on a simple yet effective principle: embeddings of positive pairs are pulled together, while those of negative pairs are pushed apart. Although various forms of contrastive loss have been proposed and analyzed from different perspectives, prior works lack a comprehensive framework that systematically explains a broad class of these objectives. In this paper, we present a unified framework for understanding CL, which is based on analyzing the cosine similarity between embeddings of positive and negative pairs. In full-batch settings, we show that perfect alignment of positive pairs is unattainable when similarities of negative pairs fall below a certain threshold, and that this misalignment can be alleviated by incorporating within-view negative pairs. In mini-batch settings, we demonstrate that smaller batch sizes incur stronger separation among negative pairs within batches, which leads to higher variance in similarities of negative pairs. To address this limitation of mini-batch CL, we introduce an auxiliary loss term that reduces the variance of similarities of negative pairs in CL. Empirical results demonstrate that incorporating the proposed loss consistently improves the performance of CL methods in small-batch training. |
|
A Hierarchical Probabilistic Framework for Incremental Knowledge Tracing in Classroom Settings |
GitHub |
Knowledge tracing (KT) aims to estimate a student's evolving knowledge state and predict their performance on new exercises based on performance history. Many realistic classroom settings for KT are typically low-resource in data and require online updates as students' exercise history grows, which creates significant challenges for existing KT approaches. To restore strong performance under low-resource conditions, we revisit the hierarchical knowledge concept (KC) information, which is typically available in many classroom settings and can provide strong prior when data are sparse. We therefore propose Knowledge-Tree-based Knowledge Tracing (KT$^2$), a probabilistic KT framework that models student understanding over a tree-structured hierarchy of knowledge concepts using a Hidden Markov Tree Model. KT$^2$ estimates student mastery via an EM algorithm and supports personalized prediction through an incremental update mechanism as new responses arrive. Our experiments show that KT$^2$ consistently outperforms strong baselines in realistic online, low-resource settings. |
|
HopaDIFF: Holistic-Partial Aware Fourier Conditioned Diffusion for Referring Human Action Segmentation in Multi-Person Scenarios |
GitHub |
Action segmentation is a core challenge in high-level video understanding, aiming to partition untrimmed videos into segments and assign each a label from a predefined action set. Existing methods primarily address single-person activities with fixed action sequences, overlooking multi-person scenarios. In this work, we pioneer textual reference-guided human action segmentation in multi-person settings, where a textual description specifies the target person for segmentation. We introduce the first dataset for Referring Human Action Segmentation, i.e., RHAS133, built from 133 movies and annotated with 137 fine-grained actions with 33h video data, together with textual descriptions for this new task. Benchmarking existing action recognition methods on RHAS133 using VLM-based feature extractors reveals limited performance and poor aggregation of visual cues for the target person. To address this, we propose a holistic-partial aware Fourier-conditioned diffusion framework, i.e., HopaDIFF, leveraging a novel cross-input gate attentional xLSTM to enhance holistic-partial long-range reasoning and a novel Fourier condition to introduce more fine-grained control to improve the action segmentation generation. HopaDIFF achieves state-of-the-art results on RHAS133 in diverse evaluation settings. The code is available at https://github.com/KPeng9510/HopaDIFF.git. |
|
Measuring Communication Quality of Interest Rate Announcements |
GitHub |
We use text-mining techniques to measure the accessibility and quality of information within the texts of interest rate announcements published by the Bank of Israel over the past decade. We find that comprehension of interest rate announcements published by the Bank of Israel requires fewer years of education than interest rate announcements published by the Federal Reserve and the European Central Bank. In addition, we show that the sentiment within these announcements is aligned with economic fluctuations. We also find that textual uncertainty is correlated with the volatility of the domestic financial market. |
|
Non-Contact Health Monitoring During Daily Personal Care Routines |
GitHub |
Remote photoplethysmography (rPPG) enables non-contact, continuous monitoring of physiological signals and offers a practical alternative to traditional health sensing methods. Although rPPG is promising for daily health monitoring, its application in long-term personal care scenarios, such as mirror-facing routines in high-altitude environments, remains challenging due to ambient lighting variations, frequent occlusions from hand movements, and dynamic facial postures. To address these challenges, we present LADH (Long-term Altitude Daily Health), the first long-term rPPG dataset containing 240 synchronized RGB and infrared (IR) facial videos from 21 participants across five common personal care scenarios, along with ground-truth PPG, respiration, and blood oxygen signals. Our experiments demonstrate that combining RGB and IR video inputs improves the accuracy and robustness of non-contact physiological monitoring, achieving a mean absolute error (MAE) of 4.99 BPM in heart rate estimation. Furthermore, we find that multi-task learning enhances performance across multiple physiological indicators simultaneously. Dataset and code are open at https://github.com/McJackTang/FusionVitals. |
|
Mutual-Supervised Learning for Sequential-to-Parallel Code Translation |
GitHub |
The rise of GPU-based high-performance computing (HPC) has driven the widespread adoption of parallel programming models such as CUDA. Yet, the inherent complexity of parallel programming creates a demand for the automated sequential-to-parallel approaches. However, data scarcity poses a significant challenge for machine learning-based sequential-to-parallel code translation. Although recent back-translation methods show promise, they still fail to ensure functional equivalence in the translated code. In this paper, we propose a novel Mutual-Supervised Learning (MSL) framework for sequential-to-parallel code translation to address the functional equivalence issue. MSL consists of two models, a Translator and a Tester. Through an iterative loop consisting of Co-verify and Co-evolve steps, the Translator and the Tester mutually generate data for each other and improve collectively. The Tester generates unit tests to verify and filter functionally equivalent translated code, thereby evolving the Translator, while the Translator generates translated code as augmented input to evolve the Tester. Experimental results demonstrate that MuSL significantly enhances the performance of the base model: when applied to Qwen2.5-Coder, it not only improves Pass@1 by up to 28.91% and boosts Tester performance by 68.90%, but also outperforms the previous state-of-the-art method CodeRosetta by 1.56 and 6.92 in BLEU and CodeBLEU scores, while achieving performance comparable to DeepSeek-R1 and GPT-4.1. Our code is available at https://github.com/kcxain/musl. |
|
Unsupervised Elicitation of Language Models |
GitHub |
To steer pretrained language models for downstream tasks, today's post-training paradigm relies on humans to specify desired behaviors. However, for models with superhuman capabilities, it is difficult or impossible to get high-quality human supervision. To address this challenge, we introduce a new unsupervised algorithm, Internal Coherence Maximization (ICM), to fine-tune pretrained language models on their own generated labels, \emph{without external supervision}. On GSM8k-verification, TruthfulQA, and Alpaca reward modeling tasks, our method matches the performance of training on golden supervision and outperforms training on crowdsourced human supervision. On tasks where LMs' capabilities are strongly superhuman, our method can elicit those capabilities significantly better than training on human labels. Finally, we show that our method can improve the training of frontier LMs: we use our method to train an unsupervised reward model and use reinforcement learning to train a Claude 3.5 Haiku-based assistant. Both the reward model and the assistant outperform their human-supervised counterparts. |
|
When Large Language Models are Reliable for Judging Empathic Communication |
GitHub |
Large language models (LLMs) excel at generating empathic responses in text-based conversations. But, how reliably do they judge the nuances of empathic communication? We investigate this question by comparing how experts, crowdworkers, and LLMs annotate empathic communication across four evaluative frameworks drawn from psychology, natural language processing, and communications applied to 200 real-world conversations where one speaker shares a personal problem and the other offers support. Drawing on 3,150 expert annotations, 2,844 crowd annotations, and 3,150 LLM annotations, we assess inter-rater reliability between these three annotator groups. We find that expert agreement is high but varies across the frameworks' sub-components depending on their clarity, complexity, and subjectivity. We show that expert agreement offers a more informative benchmark for contextualizing LLM performance than standard classification metrics. Across all four frameworks, LLMs consistently approach this expert level benchmark and exceed the reliability of crowdworkers. These results demonstrate how LLMs, when validated on specific tasks with appropriate benchmarks, can support transparency and oversight in emotionally sensitive applications including their use as conversational companions. |
|
Simulation-trained conditional normalizing flows for likelihood approximation: a case study in stress regulation kinetics in yeast |
GitHub |
Physics-inspired inference often hinges on the ability to construct a likelihood, or the probability of observing a sequence of data given a model. These likelihoods can be directly maximized for parameter estimation, incorporated into Bayesian frameworks, or even used as loss functions in neural networks. Yet, many models, despite being conceptually simple, lack tractable likelihoods. A notable example arises in estimating protein production from snapshot measurements of actively dividing cells. Here, the challenge stems from cell divisions occurring at non-Exponentially distributed intervals with each division stochastically partitioning protein content between daughter cells, making protein counts in any given cell a function of its full division history. Such history dependence precludes a straightforward likelihood based on a (standard Markovian) master equation. Instead, we employ conditional normalizing flows (a class of neural network models designed to learn probability distributions) to approximate otherwise intractable likelihoods from simulated data. As a case study, we examine activation of the \emph{glc3} gene in yeast involved in glycogen synthesis and expressed under nutrient-limiting conditions. We monitor this activity using snapshot fluorescence measurements via flow cytometry, where GFP expression reflects \emph{glc3} promoter activity. A na\"ive analysis of flow cytometry data ignoring cell division suggests many cells are active with low expression. However, fluorescent proteins persist and can be inherited, so cells may appear active from retaining ancestral fluorescence. Explicitly accounting for the (non-Markovian) effects of cell division reveals \emph{glc3} is mostly inactive under stress, showing that while cells occasionally activate it, expression is brief and transient. |
|
A Call for Collaborative Intelligence: Why Human-Agent Systems Should Precede AI Autonomy |
GitHub |
Recent improvements in large language models (LLMs) have led many researchers to focus on building fully autonomous AI agents. This position paper questions whether this approach is the right path forward, as these autonomous systems still have problems with reliability, transparency, and understanding the actual requirements of human. We suggest a different approach: LLM-based Human-Agent Systems (LLM-HAS), where AI works with humans rather than replacing them. By keeping human involved to provide guidance, answer questions, and maintain control, these systems can be more trustworthy and adaptable. Looking at examples from healthcare, finance, and software development, we show how human-AI teamwork can handle complex tasks better than AI working alone. We also discuss the challenges of building these collaborative systems and offer practical solutions. This paper argues that progress in AI should not be measured by how independent systems become, but by how well they can work with humans. The most promising future for AI is not in systems that take over human roles, but in those that enhance human capabilities through meaningful partnership. |
|
Vision Matters: Simple Visual Perturbations Can Boost Multimodal Math Reasoning |
GitHub |
Despite the rapid progress of multimodal large language models (MLLMs), they have largely overlooked the importance of visual processing. In a simple yet revealing experiment, we interestingly find that language-only models, when provided with image captions, can achieve comparable or even better performance than MLLMs that consume raw visual inputs. This suggests that current MLLMs may generate accurate visual descriptions but fail to effectively integrate them during reasoning. Motivated by this, we propose a simple visual perturbation framework that enhances perceptual robustness without requiring algorithmic modifications or additional training data. Our approach introduces three targeted perturbations: distractor concatenation, dominance-preserving mixup, and random rotation, that can be easily integrated into existing post-training pipelines including SFT, DPO, and GRPO. Through extensive experiments across multiple datasets, we demonstrate consistent improvements in mathematical reasoning performance, with gains comparable to those achieved through algorithmic changes. Additionally, we achieve competitive performance among open-source 7B RL-tuned models by training Qwen2.5-VL-7B with visual perturbation. Through comprehensive ablation studies, we analyze the effectiveness of different perturbation strategies, revealing that each perturbation type contributes uniquely to different aspects of visual reasoning. Our findings highlight the critical role of visual perturbation in multimodal mathematical reasoning: better reasoning begins with better seeing. Our code is available at https://github.com/YutingLi0606/Vision-Matters. |
|
Efficient Prediction of SO(3)-Equivariant Hamiltonian Matrices via SO(2) Local Frames |
GitHub |
We consider the task of predicting Hamiltonian matrices to accelerate electronic structure calculations, which plays an important role in physics, chemistry, and materials science. Motivated by the inherent relationship between the off-diagonal blocks of the Hamiltonian matrix and the SO(2) local frame, we propose a novel and efficient network, called QHNetV2, that achieves global SO(3) equivariance without the costly SO(3) Clebsch-Gordan tensor products. This is achieved by introducing a set of new efficient and powerful SO(2)-equivariant operations and performing all off-diagonal feature updates and message passing within SO(2) local frames, thereby eliminating the need of SO(3) tensor products. Moreover, a continuous SO(2) tensor product is performed within the SO(2) local frame at each node to fuse node features, mimicking the symmetric contraction operation. Extensive experiments on the large QH9 and MD17 datasets demonstrate that our model achieves superior performance across a wide range of molecular structures and trajectories, highlighting its strong generalization capability. The proposed SO(2) operations on SO(2) local frames offer a promising direction for scalable and symmetry-aware learning of electronic structures. Our code will be released as part of the AIRS library https://github.com/divelab/AIRS. |
|
FARCLUSS: Fuzzy Adaptive Rebalancing and Contrastive Uncertainty Learning for Semi-Supervised Semantic Segmentation |
GitHub |
Semi-supervised semantic segmentation (SSSS) faces persistent challenges in effectively leveraging unlabeled data, such as ineffective utilization of pseudo-labels, exacerbation of class imbalance biases, and neglect of prediction uncertainty. Current approaches often discard uncertain regions through strict thresholding favouring dominant classes. To address these limitations, we introduce a holistic framework that transforms uncertainty into a learning asset through four principal components: (1) fuzzy pseudo-labeling, which preserves soft class distributions from top-K predictions to enrich supervision; (2) uncertainty-aware dynamic weighting, that modulate pixel-wise contributions via entropy-based reliability scores; (3) adaptive class rebalancing, which dynamically adjust losses to counteract long-tailed class distributions; and (4) lightweight contrastive regularization, that encourage compact and discriminative feature embeddings. Extensive experiments on benchmarks demonstrate that our method outperforms current state-of-the-art approaches, achieving significant improvements in the segmentation of under-represented classes and ambiguous regions. |
|
Autonomous Computer Vision Development with Agentic AI |
GitHub |
Agentic Artificial Intelligence (AI) systems leveraging Large Language Models (LLMs) exhibit significant potential for complex reasoning, planning, and tool utilization. We demonstrate that a specialized computer vision system can be built autonomously from a natural language prompt using Agentic AI methods. This involved extending SimpleMind (SM), an open-source Cognitive AI environment with configurable tools for medical image analysis, with an LLM-based agent, implemented using OpenManus, to automate the planning (tool configuration) for a particular computer vision task. We provide a proof-of-concept demonstration that an agentic system can interpret a computer vision task prompt, plan a corresponding SimpleMind workflow by decomposing the task and configuring appropriate tools. From the user input prompt, "provide sm (SimpleMind) config for lungs, heart, and ribs segmentation for cxr (chest x-ray)"), the agent LLM was able to generate the plan (tool configuration file in YAML format), and execute SM-Learn (training) and SM-Think (inference) scripts autonomously. The computer vision agent automatically configured, trained, and tested itself on 50 chest x-ray images, achieving mean dice scores of 0.96, 0.82, 0.83, for lungs, heart, and ribs, respectively. This work shows the potential for autonomous planning and tool configuration that has traditionally been performed by a data scientist in the development of computer vision applications. |
|
Data-Driven Modeling of IRCU Patient Flow in the COVID-19 Pandemic |
|
Intermediate Respiratory Care Units (IRCUs) are vital during crises like COVID-19. This study evaluated clinical outcomes and operational dynamics of a new Spanish IRCU with specialized staffing. A prospective cohort study (April-August 2021) included 249 adult patients with COVID-19 respiratory failure (UHVN IRCU, Granada). Data on demographics, Non-Invasive Ventilation (NIV), length of stay (LOS), and outcomes (ICU transfer, exitus, recovery) were analyzed. Patient flow was simulated using a data-calibrated deterministic compartmental model (Ordinary Differential Equations, ODEs) that represented state transitions, and an empirical LOS-based stochastic convolution model that incorporated admission variability. The median age was 51; 31% of patients required NIV. NIV patients were older (median 61 vs 42, p<0.001). Overall, 8% needed ICU transfer; 3% experienced in-IRCU exitus. Notably, no ICU transfers or deaths occurred among 172 non-NIV patients. Of 77 high-risk NIV patients, 68% recovered in IRCU without ICU escalation. The ODE model, based on transition rates between patient states, reflected aggregate outcomes. Both modeling approaches demonstrated system strain during admission surges (partially mitigated by simulated care efficiency improvements via parameter modulation) and yielded consistent peak occupancy estimates. This IRCU, with specialized staffing, effectively managed severe COVID-19. High recovery rates, especially for NIV patients, potentially eased ICU pressure. Dynamic modeling confirmed surge vulnerability but highlighted the benefits of care efficiency from modulated transition parameters. Findings underscore positive outcomes in this IRCU model and support such units in pandemic response. |
|
Revisit What You See: Disclose Language Prior in Vision Tokens for Efficient Guided Decoding of LVLMs |
GitHub |
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across various multimodal tasks by integrating visual perception with language understanding. However, conventional decoding strategies of LVLMs often fail to successfully utilize visual information, leading to visually ungrounded responses. While various approaches have been proposed to address this limitation, they typically require additional training, multi-step inference procedures, or external model dependencies. This paper introduces ReVisiT, a simple yet effective decoding method that references vision tokens to guide the text generation process in LVLMs. Our approach leverages the semantic information embedded within vision tokens by projecting them into the text token distribution space, and dynamically selecting the most relevant vision token at each decoding step through constrained divergence minimization. This selected vision token is then used to refine the output distribution to better incorporate visual semantics. Experiments on three LVLM hallucination benchmarks with two recent LVLMs demonstrate that ReVisiT consistently enhances visual grounding with minimal computational overhead. Moreover, our method achieves competitive or superior results relative to state-of-the-art baselines while reducing computational costs for up to $2\times$. |
|
V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning |
GitHub |
A major challenge for modern AI is to learn to understand the world and learn to act largely by observation. This paper explores a self-supervised approach that combines internet-scale video data with a small amount of interaction data (robot trajectories), to develop models capable of understanding, predicting, and planning in the physical world. We first pre-train an action-free joint-embedding-predictive architecture, V-JEPA 2, on a video and image dataset comprising over 1 million hours of internet video. V-JEPA 2 achieves strong performance on motion understanding (77.3 top-1 accuracy on Something-Something v2) and state-of-the-art performance on human action anticipation (39.7 recall-at-5 on Epic-Kitchens-100) surpassing previous task-specific models. Additionally, after aligning V-JEPA 2 with a large language model, we demonstrate state-of-the-art performance on multiple video question-answering tasks at the 8 billion parameter scale (e.g., 84.0 on PerceptionTest, 76.9 on TempCompass). Finally, we show how self-supervised learning can be applied to robotic planning tasks by post-training a latent action-conditioned world model, V-JEPA 2-AC, using less than 62 hours of unlabeled robot videos from the Droid dataset. We deploy V-JEPA 2-AC zero-shot on Franka arms in two different labs and enable picking and placing of objects using planning with image goals. Notably, this is achieved without collecting any data from the robots in these environments, and without any task-specific training or reward. This work demonstrates how self-supervised learning from web-scale data and a small amount of robot interaction data can yield a world model capable of planning in the physical world. |
|
The COVID-19 Inflation Weighting in Israel |
GitHub |
Significant shifts in the composition of consumer spending as a result of the COVID-19 crisis can complicate the interpretation of official inflation data, which are calculated by the Central Bureau of Statistics (CBS) based on a fixed basket of goods. We focus on Israel as a country that experienced three lockdowns, additional restrictions that significantly changed consumer behavior, and a successful vaccination campaign that has led to the lifting of most of these restrictions. We use credit card spending data to construct a consumption basket of goods representing the composition of household consumption during the COVID-19 period. We use this synthetic COVID-19 basket to calculate the adjusted inflation rate that should prevail during the pandemic period. We find that the differences between COVID-19-adjusted and CBS (unadjusted) inflation measures are transitory. Only the contribution of certain goods and services, particularly housing and transportation, to inflation changed significantly, especially during the first and second lockdowns. Although lockdowns and restrictions in developed countries created a significant bias in inflation weighting, the inflation bias remained unexpectedly small and transitory during the COVID-19 period in Israel. |
|
Exposure-slot: Exposure-centric representations learning with Slot-in-Slot Attention for Region-aware Exposure Correction |
GitHub |
Image exposure correction enhances images captured under diverse real-world conditions by addressing issues of under- and over-exposure, which can result in the loss of critical details and hinder content recognition. While significant advancements have been made, current methods often fail to achieve optimal feature learning for effective correction. To overcome these challenges, we propose Exposure-slot, a novel framework that integrates a prompt-based slot-in-slot attention mechanism to cluster exposed |
|
feature regions and learn exposure-centric features for each cluster. By extending the Slot Attention algorithm with a hierarchical structure, our approach progressively clusters features, enabling precise and region-aware correction. In particular, learnable prompts tailored to exposure characteristics of slots further enhance feature quality, adapting dynamically to varying conditions. Our method delivers superior performance on benchmark datasets, surpassing the current state-of-the-art with a PSNR improvement of over 1.85 dB on the SICE dataset and 0.4 dB on the LCDP dataset, thereby establishing a new benchmark for multi-exposure correction. |
|
|
|
Revisiting Diffusion Models: From Generative Pre-training to One-Step Generation |
GitHub |
Diffusion distillation is a widely used technique to reduce the sampling cost of diffusion models, yet it often requires extensive training, and the student performance tends to be degraded. Recent studies show that incorporating a GAN objective may alleviate these issues, yet the underlying mechanism remains unclear. In this work, we first identify a key limitation of distillation: mismatched step sizes and parameter numbers between the teacher and the student model lead them to converge to different local minima, rendering direct imitation suboptimal. We further demonstrate that a standalone GAN objective, without relying a distillation loss, overcomes this limitation and is sufficient to convert diffusion models into efficient one-step generators. Based on this finding, we propose that diffusion training may be viewed as a form of generative pre-training, equipping models with capabilities that can be unlocked through lightweight GAN fine-tuning. Supporting this view, we create a one-step generation model by fine-tuning a pre-trained model with 85% of parameters frozen, achieving strong performance with only 0.2M images and near-SOTA results with 5M images. We further present a frequency-domain analysis that may explain the one-step generative capability gained in diffusion training. Overall, our work provides a new perspective for diffusion training, highlighting its role as a powerful generative pre-training process, which can be the basis for building efficient one-step generation models. |
|
UniPre3D: Unified Pre-training of 3D Point Cloud Models with Cross-Modal Gaussian Splatting |
GitHub |
The scale diversity of point cloud data presents significant challenges in developing unified representation learning techniques for 3D vision. Currently, there are few unified 3D models, and no existing pre-training method is equally effective for both object- and scene-level point clouds. In this paper, we introduce UniPre3D, the first unified pre-training method that can be seamlessly applied to point clouds of any scale and 3D models of any architecture. Our approach predicts Gaussian primitives as the pre-training task and employs differentiable Gaussian splatting to render images, enabling precise pixel-level supervision and end-to-end optimization. To further regulate the complexity of the pre-training task and direct the model's focus toward geometric structures, we integrate 2D features from pre-trained image models to incorporate well-established texture knowledge. We validate the universal effectiveness of our proposed method through extensive experiments across a variety of object- and scene-level tasks, using diverse point cloud models as backbones. Code is available at https://github.com/wangzy22/UniPre3D. |
|
Evasion Attacks Against Bayesian Predictive Models |
GitHub |
There is an increasing interest in analyzing the behavior of machine learning systems against adversarial attacks. However, most of the research in adversarial machine learning has focused on studying weaknesses against evasion or poisoning attacks to predictive models in classical setups, with the susceptibility of Bayesian predictive models to attacks remaining underexplored. This paper introduces a general methodology for designing optimal evasion attacks against such models. We investigate two adversarial objectives: perturbing specific point predictions and altering the entire posterior predictive distribution. For both scenarios, we propose novel gradient-based attacks and study their implementation and properties in various computational setups. |
|
Towards Practical Alzheimer's Disease Diagnosis: A Lightweight and Interpretable Spiking Neural Model |
GitHub |
Early diagnosis of Alzheimer's Disease (AD), especially at the mild cognitive impairment (MCI) stage, is vital yet hindered by subjective assessments and the high cost of multimodal imaging modalities. Although deep learning methods offer automated alternatives, their energy inefficiency and computational demands limit real-world deployment, particularly in resource-constrained settings. As a brain-inspired paradigm, spiking neural networks (SNNs) are inherently well-suited for modeling the sparse, event-driven patterns of neural degeneration in AD, offering a promising foundation for interpretable and low-power medical diagnostics. However, existing SNNs often suffer from weak expressiveness and unstable training, which restrict their effectiveness in complex medical tasks. To address these limitations, we propose FasterSNN, a hybrid neural architecture that integrates biologically inspired LIF neurons with region-adaptive convolution and multi-scale spiking attention. This design enables sparse, efficient processing of 3D MRI while preserving diagnostic accuracy. Experiments on benchmark datasets demonstrate that FasterSNN achieves competitive performance with substantially improved efficiency and stability, supporting its potential for practical AD screening. Our source code is available at https://github.com/wuchangw/FasterSNN. |
|
DAVSP: Safety Alignment for Large Vision-Language Models via Deep Aligned Visual Safety Prompt |
GitHub |
Large Vision-Language Models (LVLMs) have achieved impressive progress across various applications but remain vulnerable to malicious queries that exploit the visual modality. Existing alignment approaches typically fail to resist malicious queries while preserving utility on benign ones effectively. To address these challenges, we propose Deep Aligned Visual Safety Prompt (DAVSP), which is built upon two key innovations. First, we introduce the Visual Safety Prompt, which appends a trainable padding region around the input image. It preserves visual features and expands the optimization space. Second, we propose Deep Alignment, a novel approach to train the visual safety prompt through supervision in the model's activation space. It enhances the inherent ability of LVLMs to perceive malicious queries, achieving deeper alignment than prior works. Extensive experiments across five benchmarks on two representative LVLMs demonstrate that DAVSP effectively resists malicious queries while preserving benign input utility. Furthermore, DAVSP exhibits great cross-model generation ability. Ablation studies further reveal that both the Visual Safety Prompt and Deep Alignment are essential components, jointly contributing to its overall effectiveness. The code is publicly available at https://github.com/zhangyitonggg/DAVSP. |
|
Classifying Unreliable Narrators with Large Language Models |
GitHub |
Often when we interact with a first-person account of events, we consider whether or not the narrator, the primary speaker of the text, is reliable. In this paper, we propose using computational methods to identify unreliable narrators, i.e. those who unintentionally misrepresent information. Borrowing literary theory from narratology to define different types of unreliable narrators based on a variety of textual phenomena, we present TUNa, a human-annotated dataset of narratives from multiple domains, including blog posts, subreddit posts, hotel reviews, and works of literature. We define classification tasks for intra-narrational, inter-narrational, and inter-textual unreliabilities and analyze the performance of popular open-weight and proprietary LLMs for each. We propose learning from literature to perform unreliable narrator classification on real-world text data. To this end, we experiment with few-shot, fine-tuning, and curriculum learning settings. Our results show that this task is very challenging, and there is potential for using LLMs to identify unreliable narrators. We release our expert-annotated dataset and code and invite future research in this area. |
|
Consistent Story Generation with Asymmetry Zigzag Sampling |
GitHub |
Text-to-image generation models have made significant progress in producing high-quality images from textual descriptions, yet they continue to struggle with maintaining subject consistency across multiple images, a fundamental requirement for visual storytelling. Existing methods attempt to address this by either fine-tuning models on large-scale story visualization datasets, which is resource-intensive, or by using training-free techniques that share information across generations, which still yield limited success. In this paper, we introduce a novel training-free sampling strategy called Zigzag Sampling with Asymmetric Prompts and Visual Sharing to enhance subject consistency in visual story generation. Our approach proposes a zigzag sampling mechanism that alternates between asymmetric prompting to retain subject characteristics, while a visual sharing module transfers visual cues across generated images to %further enforce consistency. Experimental results, based on both quantitative metrics and qualitative evaluations, demonstrate that our method significantly outperforms previous approaches in generating coherent and consistent visual stories. The code is available at https://github.com/Mingxiao-Li/Asymmetry-Zigzag-StoryDiffusion. |
|
SRPL-SFDA: SAM-Guided Reliable Pseudo-Labels for Source-Free Domain Adaptation in Medical Image Segmentation |
GitHub |
Domain Adaptation (DA) is crucial for robust deployment of medical image segmentation models when applied to new clinical centers with significant domain shifts. Source-Free Domain Adaptation (SFDA) is appealing as it can deal with privacy concerns and access constraints on source-domain data during adaptation to target-domain data. However, SFDA faces challenges such as insufficient supervision in the target domain with unlabeled images. In this work, we propose a Segment Anything Model (SAM)-guided Reliable Pseudo-Labels method for SFDA (SRPL-SFDA) with three key components: 1) Test-Time Tri-branch Intensity Enhancement (T3IE) that not only improves quality of raw pseudo-labels in the target domain, but also leads to SAM-compatible inputs with three channels to better leverage SAM's zero-shot inference ability for refining the pseudo-labels; 2) A reliable pseudo-label selection module that rejects low-quality pseudo-labels based on Consistency of Multiple SAM Outputs (CMSO) under input perturbations with T3IE; and 3) A reliability-aware training procedure in the unlabeled target domain where reliable pseudo-labels are used for supervision and unreliable parts are regularized by entropy minimization. Experiments conducted on two multi-domain medical image segmentation datasets for fetal brain and the prostate respectively demonstrate that: 1) SRPL-SFDA effectively enhances pseudo-label quality in the unlabeled target domain, and improves SFDA performance by leveraging the reliability-aware training; 2) SRPL-SFDA outperformed state-of-the-art SFDA methods, and its performance is close to that of supervised training in the target domain. The code of this work is available online: https://github.com/HiLab-git/SRPL-SFDA. |
|
Retrieval of Surface Solar Radiation through Implicit Albedo Recovery from Temporal Context |
GitHub |
Accurate retrieval of surface solar radiation (SSR) from satellite imagery critically depends on estimating the background reflectance that a spaceborne sensor would observe under clear-sky conditions. Deviations from this baseline can then be used to detect cloud presence and guide radiative transfer models in inferring atmospheric attenuation. Operational retrieval algorithms typically approximate background reflectance using monthly statistics, assuming surface properties vary slowly relative to atmospheric conditions. However, this approach fails in mountainous regions where intermittent snow cover and changing snow surfaces are frequent. We propose an attention-based emulator for SSR retrieval that implicitly learns to infer clear-sky surface reflectance from raw satellite image sequences. Built on the Temporo-Spatial Vision Transformer, our approach eliminates the need for hand-crafted features such as explicit albedo maps or cloud masks. The emulator is trained on instantaneous SSR estimates from the HelioMont algorithm over Switzerland, a region characterized by complex terrain and dynamic snow cover. Inputs include multi-spectral SEVIRI imagery from the Meteosat Second Generation platform, augmented with static topographic features and solar geometry. The target variable is HelioMont's SSR, computed as the sum of its direct and diffuse horizontal irradiance components, given at a spatial resolution of 1.7 km. We show that, when provided a sufficiently long temporal context, the model matches the performances of albedo-informed models, highlighting the model's ability to internally learn and exploit latent surface reflectance dynamics. Our geospatial analysis shows this effect is most powerful in mountainous regions and improves generalization in both simple and complex topographic settings. Code and datasets are publicly available at https://github.com/frischwood/HeMu-dev.git |
|
Scalable Non-Equivariant 3D Molecule Generation via Rotational Alignment |
GitHub |
Equivariant diffusion models have achieved impressive performance in 3D molecule generation. These models incorporate Euclidean symmetries of 3D molecules by utilizing an SE(3)-equivariant denoising network. However, specialized equivariant architectures limit the scalability and efficiency of diffusion models. In this paper, we propose an approach that relaxes such equivariance constraints. Specifically, our approach learns a sample-dependent SO(3) transformation for each molecule to construct an aligned latent space. A non-equivariant diffusion model is then trained over the aligned representations. Experimental results demonstrate that our approach performs significantly better than previously reported non-equivariant models. It yields sample quality comparable to state-of-the-art equivariant diffusion models and offers improved training and sampling efficiency. Our code is available at https://github.com/skeletondyh/RADM |
|
Attention, Please! Revisiting Attentive Probing for Masked Image Modeling |
GitHub |
As fine-tuning (FT) becomes increasingly impractical at scale, probing is emerging as the preferred evaluation protocol for self-supervised learning (SSL). Yet, the standard linear probing (LP) fails to adequately reflect the potential of models trained with Masked Image Modeling (MIM), due to the distributed nature of patch tokens. This motivates the need for attentive probing, an alternative that uses attention to selectively aggregate patch-level features. Despite its growing adoption, attentive probing remains under-explored, with existing methods suffering from excessive parameterization and poor computational efficiency. In this work, we revisit attentive probing through the lens of the accuracy-efficiency trade-off. We conduct a systematic study of existing methods, analyzing their mechanisms and benchmarking their performance. We introduce efficient probing (EP), a multi-query cross-attention mechanism that eliminates redundant projections, reduces the number of trainable parameters, and achieves up to a 10$\times$ speed-up over conventional multi-head attention. Despite its simplicity, EP outperforms LP and prior attentive probing approaches across seven benchmarks, generalizes well beyond MIM to diverse pre-training paradigms, produces interpretable attention maps, and achieves strong gains in low-shot and layer-wise settings. Code available at https://github.com/billpsomas/efficient-probing. |
|
ViCrit: A Verifiable Reinforcement Learning Proxy Task for Visual Perception in VLMs |
GitHub |
Reinforcement learning (RL) has shown great effectiveness for fine-tuning large language models (LLMs) using tasks that are challenging yet easily verifiable, such as math reasoning or code generation. However, extending this success to visual perception in vision-language models (VLMs) has been impeded by the scarcity of vision-centric tasks that are simultaneously challenging and unambiguously verifiable. To this end, we introduce ViCrit (Visual Caption Hallucination Critic), an RL proxy task that trains VLMs to localize a subtle, synthetic visual hallucination injected into paragraphs of human-written image captions. Starting from a 200-word captions, we inject a single, subtle visual description error-altering a few words on objects, attributes, counts, or spatial relations-and task the model to pinpoint the corrupted span given the image and the modified caption. This formulation preserves the full perceptual difficulty while providing a binary, exact-match reward that is easy to compute and unambiguous. Models trained with the ViCrit Task exhibit substantial gains across a variety of VL benchmarks. Crucially, the improvements transfer beyond natural-image training data to abstract image reasoning and visual math, showing promises of learning to perceive rather than barely memorizing seen objects. To facilitate evaluation, we further introduce ViCrit-Bench, a category-balanced diagnostic benchmark that systematically probes perception errors across diverse image domains and error types. Together, our results demonstrate that fine-grained hallucination criticism is an effective and generalizable objective for enhancing visual perception in VLMs. |
|
Geometry Reduced Order Modeling (GROM) with application to modeling of glymphatic function |
GitHub |
Computational modeling of the brain has become a key part of understanding how the brain clears metabolic waste, but patient-specific modeling on a significant scale is still out of reach with current methods. We introduce a novel approach for leveraging model order reduction techniques in computational models of brain geometries to alleviate computational costs involved in numerical simulations. Using image registration methods based on magnetic resonance imaging, we compute inter-brain mappings which allow previously computed solutions on other geometries to be mapped on to a new geometry. We investigate this approach on two example problems typical of modeling of glymphatic function, applied to a dataset of 101 MRI of human patients. We discuss the applicability of the method when applied to a patient with no known neurological disease, as well as a patient diagnosed with idiopathic Normal Pressure Hydrocephalus displaying significantly enlarged ventricles |
|
CoLMbo: Speaker Language Model for Descriptive Profiling |
GitHub |
Speaker recognition systems are often limited to classification tasks and struggle to generate detailed speaker characteristics or provide context-rich descriptions. These models primarily extract embeddings for speaker identification but fail to capture demographic attributes such as dialect, gender, and age in a structured manner. This paper introduces CoLMbo, a Speaker Language Model (SLM) that addresses these limitations by integrating a speaker encoder with prompt-based conditioning. This allows for the creation of detailed captions based on speaker embeddings. CoLMbo utilizes user-defined prompts to adapt dynamically to new speaker characteristics and provides customized descriptions, including regional dialect variations and age-related traits. This innovative approach not only enhances traditional speaker profiling but also excels in zero-shot scenarios across diverse datasets, marking a significant advancement in the field of speaker recognition. |
|
BemaGANv2: A Tutorial and Comparative Survey of GAN-based Vocoders for Long-Term Audio Generation |
GitHub |
This paper presents a tutorial-style survey and implementation guide of BemaGANv2, an advanced GAN-based vocoder designed for high-fidelity and long-term audio generation. Built upon the original BemaGAN architecture, BemaGANv2 incorporates major architectural innovations by replacing traditional ResBlocks in the generator with the Anti-aliased Multi-Periodicity composition (AMP) module, which internally applies the Snake activation function to better model periodic structures. In the discriminator framework, we integrate the Multi-Envelope Discriminator (MED), a novel architecture we originally proposed, to extract rich temporal envelope features crucial for periodicity detection. Coupled with the Multi-Resolution Discriminator (MRD), this combination enables more accurate modeling of long-range dependencies in audio. We systematically evaluate various discriminator configurations, including MSD + MED, MSD + MRD, and MPD + MED + MRD, using objective metrics (FAD, SSIM, PLCC, MCD) and subjective evaluations (MOS, SMOS). This paper also provides a comprehensive tutorial on the model architecture, training methodology, and implementation to promote reproducibility. The code and pre-trained models are available at: https://github.com/dinhoitt/BemaGANv2. |
|
Leveraging Depth and Language for Open-Vocabulary Domain-Generalized Semantic Segmentation |
GitHub |
Open-Vocabulary semantic segmentation (OVSS) and domain generalization in semantic segmentation (DGSS) highlight a subtle complementarity that motivates Open-Vocabulary Domain-Generalized Semantic Segmentation (OV-DGSS). OV-DGSS aims to generate pixel-level masks for unseen categories while maintaining robustness across unseen domains, a critical capability for real-world scenarios such as autonomous driving in adverse conditions. We introduce Vireo, a novel single-stage framework for OV-DGSS that unifies the strengths of OVSS and DGSS for the first time. Vireo builds upon the frozen Visual Foundation Models (VFMs) and incorporates scene geometry via Depth VFMs to extract domain-invariant structural features. To bridge the gap between visual and textual modalities under domain shift, we propose three key components: (1) GeoText Prompts, which align geometric features with language cues and progressively refine VFM encoder representations; (2) Coarse Mask Prior Embedding (CMPE) for enhancing gradient flow for faster convergence and stronger textual influence; and (3) the Domain-Open-Vocabulary Vector Embedding Head (DOV-VEH), which fuses refined structural and semantic features for robust prediction. Comprehensive evaluation on these components demonstrates the effectiveness of our designs. Our proposed Vireo achieves the state-of-the-art performance and surpasses existing methods by a large margin in both domain generalization and open-vocabulary recognition, offering a unified and scalable solution for robust visual understanding in diverse and dynamic environments. Code is available at https://github.com/anonymouse-9c53tp182bvz/Vireo. |
|
Bridging the Gap Between Open-Source and Proprietary LLMs in Table QA |
GitHub |
This paper presents a system developed for SemEval 2025 Task 8: Question Answering (QA) over tabular data. Our approach integrates several key components: text-to-SQL and text-to-code generation modules, a self-correction mechanism, and a retrieval-augmented generation (RAG). Additionally, it includes an end-to-end (E2E) module, all orchestrated by a large language model (LLM). Through ablation studies, we analyzed the effects of different parts of our pipeline and identified the challenges that are still present in this field. During the evaluation phase of the competition, our solution achieved an accuracy of 80%, resulting in a top-13 ranking among the 38 participating teams. Our pipeline demonstrates a significant improvement in accuracy for open-source models and achieves a performance comparable to proprietary LLMs in QA tasks over tables. The code is available at GitHub repository. |
|
LLM-Powered CPI Prediction Inference with Online Text Time Series |
GitHub |
Forecasting the Consumer Price Index (CPI) is an important yet challenging task in economics, where most existing approaches rely on low-frequency, survey-based data. With the recent advances of large language models (LLMs), there is growing potential to leverage high-frequency online text data for improved CPI prediction, an area still largely unexplored. This paper proposes LLM-CPI, an LLM-based approach for CPI prediction inference incorporating online text time series. We collect a large set of high-frequency online texts from a popularly used Chinese social network site and employ LLMs such as ChatGPT and the trained BERT models to construct continuous inflation labels for posts that are related to inflation. Online text embeddings are extracted via LDA and BERT. We develop a joint time series framework that combines monthly CPI data with LLM-generated daily CPI surrogates. The monthly model employs an ARX structure combining observed CPI data with text embeddings and macroeconomic variables, while the daily model uses a VARX structure built on LLM-generated CPI surrogates and text embeddings. We establish the asymptotic properties of the method and provide two forms of constructed prediction intervals. The finite-sample performance and practical advantages of LLM-CPI are demonstrated through both simulation and real data examples. |
|
Empirical and computer-aided robustness analysis of long-step and accelerated methods in smooth convex optimization |
GitHub |
This work assesses both empirically and theoretically, using the performance estimation methodology, how robust different first-order optimization methods are when subject to relative inexactness in their gradient computations. Relative inexactness occurs, for example, when compressing the gradient using fewer bits of information, which happens when dealing with large-scale problems on GPUs. Three major families of methods are analyzed: constant step gradient descent, long-step methods, and accelerated methods. The latter two are first shown to be theoretically not robust to inexactness. Then, a semi-heuristic shortening factor is introduced to improve their theoretical guarantees. All methods are subsequently tested on a concrete inexact problem, with two different types of relative inexactness, and it is observed that both accelerated methods are much more robust than expected, and that the shortening factor significantly helps the long-step methods. In the end, all shortened methods appear to be promising, even in this inexact setting. |
|
Rethinking Brain Tumor Segmentation from the Frequency Domain Perspective |
GitHub |
Precise segmentation of brain tumors, particularly contrast-enhancing regions visible in post-contrast MRI (areas highlighted by contrast agent injection), is crucial for accurate clinical diagnosis and treatment planning but remains challenging. However, current methods exhibit notable performance degradation in segmenting these enhancing brain tumor areas, largely due to insufficient consideration of MRI-specific tumor features such as complex textures and directional variations. To address this, we propose the Harmonized Frequency Fusion Network (HFF-Net), which rethinks brain tumor segmentation from a frequency-domain perspective. To comprehensively characterize tumor regions, we develop a Frequency Domain Decomposition (FDD) module that separates MRI images into low-frequency components, capturing smooth tumor contours and high-frequency components, highlighting detailed textures and directional edges. To further enhance sensitivity to tumor boundaries, we introduce an Adaptive Laplacian Convolution (ALC) module that adaptively emphasizes critical high-frequency details using dynamically updated convolution kernels. To effectively fuse tumor features across multiple scales, we design a Frequency Domain Cross-Attention (FDCA) integrating semantic, positional, and slice-specific information. We further validate and interpret frequency-domain improvements through visualization, theoretical reasoning, and experimental analyses. Extensive experiments on four public datasets demonstrate that HFF-Net achieves an average relative improvement of 4.48\% (ranging from 2.39\% to 7.72\%) in the mean Dice scores across the three major subregions, and an average relative improvement of 7.33% (ranging from 5.96% to 8.64%) in the segmentation of contrast-enhancing tumor regions, while maintaining favorable computational efficiency and clinical applicability. Code: https://github.com/VinyehShaw/HFF. |
|
CoRT: Code-integrated Reasoning within Thinking |
GitHub |
Large Reasoning Models (LRMs) like o1 and DeepSeek-R1 have shown remarkable progress in natural language reasoning with long chain-of-thought (CoT), yet they remain inefficient or inaccurate when handling complex mathematical operations. Addressing these limitations through computational tools (e.g., computation libraries and symbolic solvers) is promising, but it introduces a technical challenge: Code Interpreter (CI) brings external knowledge beyond the model's internal text representations, thus the direct combination is not efficient. This paper introduces CoRT, a post-training framework for teaching LRMs to leverage CI effectively and efficiently. As a first step, we address the data scarcity issue by synthesizing code-integrated reasoning data through Hint-Engineering, which strategically inserts different hints at appropriate positions to optimize LRM-CI interaction. We manually create 30 high-quality samples, upon which we post-train models ranging from 1.5B to 32B parameters, with supervised fine-tuning, rejection fine-tuning and reinforcement learning. Our experimental results demonstrate that Hint-Engineering models achieve 4\% and 8\% absolute improvements on DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Qwen-1.5B respectively, across five challenging mathematical reasoning datasets. Furthermore, Hint-Engineering models use about 30\% fewer tokens for the 32B model and 50\% fewer tokens for the 1.5B model compared with the natural language models. The models and code are available at https://github.com/ChengpengLi1003/CoRT. |
|
Improving Personalized Search with Regularized Low-Rank Parameter Updates |
GitHub |
Personalized vision-language retrieval seeks to recognize new concepts (e.g. "my dog Fido") from only a few examples. This task is challenging because it requires not only learning a new concept from a few images, but also integrating the personal and general knowledge together to recognize the concept in different contexts. In this paper, we show how to effectively adapt the internal representation of a vision-language dual encoder model for personalized vision-language retrieval. We find that regularized low-rank adaption of a small set of parameters in the language encoder's final layer serves as a highly effective alternative to textual inversion for recognizing the personal concept while preserving general knowledge. Additionally, we explore strategies for combining parameters of multiple learned personal concepts, finding that parameter addition is effective. To evaluate how well general knowledge is preserved in a finetuned representation, we introduce a metric that measures image retrieval accuracy based on captions generated by a vision language model (VLM). Our approach achieves state-of-the-art accuracy on two benchmarks for personalized image retrieval with natural language queries - DeepFashion2 and ConCon-Chi - outperforming the prior art by 4%-22% on personal retrievals. |
|
When Meaning Stays the Same, but Models Drift: Evaluating Quality of Service under Token-Level Behavioral Instability in LLMs |
GitHub |
We investigate how large language models respond to prompts that differ only in their token-level realization but preserve the same semantic intent, a phenomenon we call prompt variance. We propose Prompt-Based Semantic Shift (PBSS), a diagnostic framework for measuring behavioral drift in LLMs under semantically equivalent prompt rewordings. Applied to ten constrained tasks, PBSS reveals consistent, model-specific response shifts, suggesting statistical regularities linked to tokenization and decoding. These results highlight an overlooked dimension of model evaluation stability under rephrasing and suggest that tokenization strategies and decoding dynamics may contribute to post-training quality of service instability. |
|
SAGE: Exploring the Boundaries of Unsafe Concept Domain with Semantic-Augment Erasing |
GitHub |
Diffusion models (DMs) have achieved significant progress in text-to-image generation. However, the inevitable inclusion of sensitive information during pre-training poses safety risks, such as unsafe content generation and copyright infringement. Concept erasing finetunes weights to unlearn undesirable concepts, and has emerged as a promising solution. However, existing methods treat unsafe concept as a fixed word and repeatedly erase it, trapping DMs in ``word concept abyss'', which prevents generalized concept-related erasing. To escape this abyss, we introduce semantic-augment erasing which transforms concept word erasure into concept domain erasure by the cyclic self-check and self-erasure. It efficiently explores and unlearns the boundary representation of concept domain through semantic spatial relationships between original and training DMs, without requiring additional preprocessed data. Meanwhile, to mitigate the retention degradation of irrelevant concepts while erasing unsafe concepts, we further propose the global-local collaborative retention mechanism that combines global semantic relationship alignment with local predicted noise preservation, effectively expanding the retentive receptive field for irrelevant concepts. We name our method SAGE, and extensive experiments demonstrate the comprehensive superiority of SAGE compared with other methods in the safe generation of DMs. The code and weights will be open-sourced at https://github.com/KevinLight831/SAGE. |
|
SLRNet: A Real-Time LSTM-Based Sign Language Recognition System |
GitHub |
Sign Language Recognition (SLR) plays a crucial role in bridging the communication gap between the hearing-impaired community and society. This paper introduces SLRNet, a real-time webcam-based ASL recognition system using MediaPipe Holistic and Long Short-Term Memory (LSTM) networks. The model processes video streams to recognize both ASL alphabet letters and functional words. With a validation accuracy of 86.7%, SLRNet demonstrates the feasibility of inclusive, hardware-independent gesture recognition. |
|
What is the Cost of Differential Privacy for Deep Learning-Based Trajectory Generation? |
GitHub |
While location trajectories offer valuable insights, they also reveal sensitive personal information. Differential Privacy (DP) offers formal protection, but achieving a favourable utility-privacy trade-off remains challenging. Recent works explore deep learning-based generative models to produce synthetic trajectories. However, current models lack formal privacy guarantees and rely on conditional information derived from real data during generation. This work investigates the utility cost of enforcing DP in such models, addressing three research questions across two datasets and eleven utility metrics. (1) We evaluate how DP-SGD, the standard DP training method for deep learning, affects the utility of state-of-the-art generative models. (2) Since DP-SGD is limited to unconditional models, we propose a novel DP mechanism for conditional generation that provides formal guarantees and assess its impact on utility. (3) We analyse how model types - Diffusion, VAE, and GAN - affect the utility-privacy trade-off. Our results show that DP-SGD significantly impacts performance, although some utility remains if the datasets is sufficiently large. The proposed DP mechanism improves training stability, particularly when combined with DP-SGD, for unstable models such as GANs and on smaller datasets. Diffusion models yield the best utility without guarantees, but with DP-SGD, GANs perform best, indicating that the best non-private model is not necessarily optimal when targeting formal guarantees. In conclusion, DP trajectory generation remains a challenging task, and formal guarantees are currently only feasible with large datasets and in constrained use cases. |
|
Ming-Omni: A Unified Multimodal Model for Perception and Generation |
GitHub |
We propose Ming-Omni, a unified multimodal model capable of processing images, text, audio, and video, while demonstrating strong proficiency in both speech and image generation. Ming-Omni employs dedicated encoders to extract tokens from different modalities, which are then processed by Ling, an MoE architecture equipped with newly proposed modality-specific routers. This design enables a single model to efficiently process and fuse multimodal inputs within a unified framework, thereby facilitating diverse tasks without requiring separate models, task-specific fine-tuning, or structural redesign. Importantly, Ming-Omni extends beyond conventional multimodal models by supporting audio and image generation. This is achieved through the integration of an advanced audio decoder for natural-sounding speech and Ming-Lite-Uni for high-quality image generation, which also allow the model to engage in context-aware chatting, perform text-to-speech conversion, and conduct versatile image editing. Our experimental results showcase Ming-Omni offers a powerful solution for unified perception and generation across all modalities. Notably, our proposed Ming-Omni is the first open-source model we are aware of to match GPT-4o in modality support, and we release all code and model weights to encourage further research and development in the community. |
|
California Crop Yield Benchmark: Combining Satellite Image, Climate, Evapotranspiration, and Soil Data Layers for County-Level Yield Forecasting of Over 70 Crops |
GitHub |
California is a global leader in agricultural production, contributing 12.5% of the United States total output and ranking as the fifth-largest food and cotton supplier in the world. Despite the availability of extensive historical yield data from the USDA National Agricultural Statistics Service, accurate and timely crop yield forecasting remains a challenge due to the complex interplay of environmental, climatic, and soil-related factors. In this study, we introduce a comprehensive crop yield benchmark dataset covering over 70 crops across all California counties from 2008 to 2022. The benchmark integrates diverse data sources, including Landsat satellite imagery, daily climate records, monthly evapotranspiration, and high-resolution soil properties. To effectively learn from these heterogeneous inputs, we develop a multi-modal deep learning model tailored for county-level, crop-specific yield forecasting. The model employs stratified feature extraction and a timeseries encoder to capture spatial and temporal dynamics during the growing season. Static inputs such as soil characteristics and crop identity inform long-term variability. Our approach achieves an overall R2 score of 0.76 across all crops of unseen test dataset, highlighting strong predictive performance across California diverse agricultural regions. This benchmark and modeling framework offer a valuable foundation for advancing agricultural forecasting, climate adaptation, and precision farming. The full dataset and codebase are publicly available at our GitHub repository. |
|
AtmosMJ: Revisiting Gating Mechanism for AI Weather Forecasting Beyond the Year Scale |
GitHub |
The advent of Large Weather Models (LWMs) has marked a turning point in data-driven forecasting, with many models now outperforming traditional numerical systems in the medium range. However, achieving stable, long-range autoregressive forecasts beyond a few weeks remains a significant challenge. Prevailing state-of-the-art models that achieve year-long stability, such as SFNO and DLWP-HPX, have relied on transforming input data onto non-standard spatial domains like spherical harmonics or HEALPix meshes. This has led to the prevailing assumption that such representations are necessary to enforce physical consistency and long-term stability. This paper challenges that assumption by investigating whether comparable long-range performance can be achieved on the standard latitude-longitude grid. We introduce AtmosMJ, a deep convolutional network that operates directly on ERA5 data without any spherical remapping. The model's stability is enabled by a novel Gated Residual Fusion (GRF) mechanism, which adaptively moderates feature updates to prevent error accumulation over long recursive simulations. Our results demonstrate that AtmosMJ produces stable and physically plausible forecasts for about 500 days. In quantitative evaluations, it achieves competitive 10-day forecast accuracy against models like Pangu-Weather and GraphCast, all while requiring a remarkably low training budget of 5.7 days on a V100 GPU. Our findings suggest that efficient architectural design, rather than non-standard data representation, can be the key to unlocking stable and computationally efficient long-range weather prediction. |
|
3D-Aware Vision-Language Models Fine-Tuning with Geometric Distillation |
GitHub |
Vision-Language Models (VLMs) have shown remarkable performance on diverse visual and linguistic tasks, yet they remain fundamentally limited in their understanding of 3D spatial structures. We propose Geometric Distillation, a lightweight, annotation-free fine-tuning framework that injects human-inspired geometric cues into pretrained VLMs without modifying their architecture. By distilling (1) sparse correspondences, (2) relative depth relations, and (3) dense cost volumes from off-the-shelf 3D foundation models (e.g., MASt3R, VGGT), our method shapes representations to be geometry-aware while remaining compatible with natural image-text inputs. Through extensive evaluations on 3D vision-language reasoning and 3D perception benchmarks, our method consistently outperforms prior approaches, achieving improved 3D spatial reasoning with significantly lower computational cost. Our work demonstrates a scalable and efficient path to bridge 2D-trained VLMs with 3D understanding, opening up wider use in spatially grounded multimodal tasks. |
|
MMME: A Spontaneous Multi-Modal Micro-Expression Dataset Enabling Visual-Physiological Fusion |
GitHub |
Micro-expressions (MEs) are subtle, fleeting nonverbal cues that reveal an individual's genuine emotional state. Their analysis has attracted considerable interest due to its promising applications in fields such as healthcare, criminal investigation, and human-computer interaction. However, existing ME research is limited to single visual modality, overlooking the rich emotional information conveyed by other physiological modalities, resulting in ME recognition and spotting performance far below practical application needs. Therefore, exploring the cross-modal association mechanism between ME visual features and physiological signals (PS), and developing a multimodal fusion framework, represents a pivotal step toward advancing ME analysis. This study introduces a novel ME dataset, MMME, which, for the first time, enables synchronized collection of facial action signals (MEs), central nervous system signals (EEG), and peripheral PS (PPG, RSP, SKT, EDA, and ECG). By overcoming the constraints of existing ME corpora, MMME comprises 634 MEs, 2,841 macro-expressions (MaEs), and 2,890 trials of synchronized multimodal PS, establishing a robust foundation for investigating ME neural mechanisms and conducting multimodal fusion-based analyses. Extensive experiments validate the dataset's reliability and provide benchmarks for ME analysis, demonstrating that integrating MEs with PS significantly enhances recognition and spotting performance. To the best of our knowledge, MMME is the most comprehensive ME dataset to date in terms of modality diversity. It provides critical data support for exploring the neural mechanisms of MEs and uncovering the visual-physiological synergistic effects, driving a paradigm shift in ME research from single-modality visual analysis to multimodal fusion. The dataset will be publicly available upon acceptance of this paper. |
|
Token Perturbation Guidance for Diffusion Models |
GitHub |
Classifier-free guidance (CFG) has become an essential component of modern diffusion models to enhance both generation quality and alignment with input conditions. However, CFG requires specific training procedures and is limited to conditional generation. To address these limitations, we propose Token Perturbation Guidance (TPG), a novel method that applies perturbation matrices directly to intermediate token representations within the diffusion network. TPG employs a norm-preserving shuffling operation to provide effective and stable guidance signals that improve generation quality without architectural changes. As a result, TPG is training-free and agnostic to input conditions, making it readily applicable to both conditional and unconditional generation. We further analyze the guidance term provided by TPG and show that its effect on sampling more closely resembles CFG compared to existing training-free guidance techniques. Extensive experiments on SDXL and Stable Diffusion 2.1 show that TPG achieves nearly a 2$\times$ improvement in FID for unconditional generation over the SDXL baseline, while closely matching CFG in prompt alignment. These results establish TPG as a general, condition-agnostic guidance method that brings CFG-like benefits to a broader class of diffusion models. The code is available at https://github.com/TaatiTeam/Token-Perturbation-Guidance |
|
RS-MTDF: Multi-Teacher Distillation and Fusion for Remote Sensing Semi-Supervised Semantic Segmentation |
GitHub |
Semantic segmentation in remote sensing images is crucial for various applications, yet its performance is heavily reliant on large-scale, high-quality pixel-wise annotations, which are notoriously expensive and time-consuming to acquire. Semi-supervised semantic segmentation (SSS) offers a promising alternative to mitigate this data dependency. However, existing SSS methods often struggle with the inherent distribution mismatch between limited labeled data and abundant unlabeled data, leading to suboptimal generalization. We propose that Vision Foundation Models (VFMs), pre-trained on vast and diverse datasets, possess robust generalization capabilities that can effectively bridge this distribution gap and provide strong semantic priors for SSS. Inspired by this, we introduce RS-MTDF (Multi-Teacher Distillation and Fusion), a novel framework that leverages the powerful semantic knowledge embedded in VFMs to guide semi-supervised learning in remote sensing. Specifically, RS-MTDF employs multiple frozen VFMs (\textit{e.g.}, DINOv2 and CLIP) as expert teachers, utilizing feature-level distillation to align student features with their robust representations. To further enhance discriminative power, the distilled knowledge is seamlessly fused into the student decoder. Extensive experiments on three challenging remote sensing datasets (ISPRS Potsdam, LoveDA, and DeepGlobe) demonstrate that RS-MTDF consistently achieves state-of-the-art performance. Notably, our method outperforms existing approaches across various label ratios on LoveDA and secures the highest IoU in the majority of semantic categories. These results underscore the efficacy of multi-teacher VFM guidance in significantly enhancing both generalization and semantic understanding for remote sensing segmentation. Ablation studies further validate the contribution of each proposed module. |
|
OpenRR-1k: A Scalable Dataset for Real-World Reflection Removal |
GitHub |
Reflection removal technology plays a crucial role in photography and computer vision applications. However, existing techniques are hindered by the lack of high-quality in-the-wild datasets. In this paper, we propose a novel paradigm for collecting reflection datasets from a fresh perspective. Our approach is convenient, cost-effective, and scalable, while ensuring that the collected data pairs are of high quality, perfectly aligned, and represent natural and diverse scenarios. Following this paradigm, we collect a Real-world, Diverse, and Pixel-aligned dataset (named OpenRR-1k dataset), which contains 1,000 high-quality transmission-reflection image pairs collected in the wild. Through the analysis of several reflection removal methods and benchmark evaluation experiments on our dataset, we demonstrate its effectiveness in improving robustness in challenging real-world environments. Our dataset is available at https://github.com/caijie0620/OpenRR-1k. |
|
SDTagNet: Leveraging Text-Annotated Navigation Maps for Online HD Map Construction |
GitHub |
Autonomous vehicles rely on detailed and accurate environmental information to operate safely. High definition (HD) maps offer a promising solution, but their high maintenance cost poses a significant barrier to scalable deployment. This challenge is addressed by online HD map construction methods, which generate local HD maps from live sensor data. However, these methods are inherently limited by the short perception range of onboard sensors. To overcome this limitation and improve general performance, recent approaches have explored the use of standard definition (SD) maps as prior, which are significantly easier to maintain. We propose SDTagNet, the first online HD map construction method that fully utilizes the information of widely available SD maps, like OpenStreetMap, to enhance far range detection accuracy. Our approach introduces two key innovations. First, in contrast to previous work, we incorporate not only polyline SD map data with manually selected classes, but additional semantic information in the form of textual annotations. In this way, we enrich SD vector map tokens with NLP-derived features, eliminating the dependency on predefined specifications or exhaustive class taxonomies. Second, we introduce a point-level SD map encoder together with orthogonal element identifiers to uniformly integrate all types of map elements. Experiments on Argoverse 2 and nuScenes show that this boosts map perception performance by up to +5.9 mAP (+45%) w.r.t. map construction without priors and up to +3.2 mAP (+20%) w.r.t. previous approaches that already use SD map priors. Code is available at https://github.com/immel-f/SDTagNet |
|
Normalized Radon Cumulative Distribution Transforms for Invariance and Robustness in Optimal Transport Based Image Classification |
GitHub |
The Radon cumulative distribution transform (R-CDT), is an easy-to-compute feature extractor that facilitates image classification tasks especially in the small data regime. It is closely related to the sliced Wasserstein distance and provably guaranties the linear separability of image classes that emerge from translations or scalings. In many real-world applications, like the recognition of watermarks in filigranology, however, the data is subject to general affine transformations originating from the measurement process. To overcome this issue, we recently introduced the so-called max-normalized R-CDT that only requires elementary operations and guaranties the separability under arbitrary affine transformations. The aim of this paper is to continue our study of the max-normalized R-CDT especially with respect to its robustness against non-affine image deformations. Our sensitivity analysis shows that its separability properties are stable provided the Wasserstein-infinity distance between the samples can be controlled. Since the Wasserstein-infinity distance only allows small local image deformations, we moreover introduce a mean-normalized version of the R-CDT. In this case, robustness relates to the Wasserstein-2 distance and also covers image deformations caused by impulsive noise for instance. Our theoretical results are supported by numerical experiments showing the effectiveness of our novel feature extractors as well as their robustness against local non-affine deformations and impulsive noise. |
|
Robot-Gated Interactive Imitation Learning with Adaptive Intervention Mechanism |
GitHub |
Interactive Imitation Learning (IIL) allows agents to acquire desired behaviors through human interventions, but current methods impose high cognitive demands on human supervisors. We propose the Adaptive Intervention Mechanism (AIM), a novel robot-gated IIL algorithm that learns an adaptive criterion for requesting human demonstrations. AIM utilizes a proxy Q-function to mimic the human intervention rule and adjusts intervention requests based on the alignment between agent and human actions. By assigning high Q-values when the agent deviates from the expert and decreasing these values as the agent becomes proficient, the proxy Q-function enables the agent to assess the real-time alignment with the expert and request assistance when needed. Our expert-in-the-loop experiments reveal that AIM significantly reduces expert monitoring efforts in both continuous and discrete control tasks. Compared to the uncertainty-based baseline Thrifty-DAgger, our method achieves a 40% improvement in terms of human take-over cost and learning efficiency. Furthermore, AIM effectively identifies safety-critical states for expert assistance, thereby collecting higher-quality expert demonstrations and reducing overall expert data and environment interactions needed. Code and demo video are available at https://github.com/metadriverse/AIM. |
|
Enabling stratified sampling in high dimensions via nonlinear dimensionality reduction |
GitHub |
We consider the problem of propagating the uncertainty from a possibly large number of random inputs through a computationally expensive model. Stratified sampling is a well-known variance reduction strategy, but its application, thus far, has focused on models with a limited number of inputs due to the challenges of creating uniform partitions in high dimensions. To overcome these challenges, we perform stratification with respect to the uniform distribution defined over the unit interval, and then derive the corresponding strata in the original space using nonlinear dimensionality reduction. We show that our approach is effective in high dimensions and can be used to further reduce the variance of multifidelity Monte Carlo estimators. |
|
MoSiC: Optimal-Transport Motion Trajectory for Dense Self-Supervised Learning |
GitHub |
Dense self-supervised learning has shown great promise for learning pixel- and patch-level representations, but extending it to videos remains challenging due to the complexity of motion dynamics. Existing approaches struggle as they rely on static augmentations that fail under object deformations, occlusions, and camera movement, leading to inconsistent feature learning over time. We propose a motion-guided self-supervised learning framework that clusters dense point tracks to learn spatiotemporally consistent representations. By leveraging an off-the-shelf point tracker, we extract long-range motion trajectories and optimize feature clustering through a momentum-encoder-based optimal transport mechanism. To ensure temporal coherence, we propagate cluster assignments along tracked points, enforcing feature consistency across views despite viewpoint changes. Integrating motion as an implicit supervisory signal, our method learns representations that generalize across frames, improving robustness in dynamic scenes and challenging occlusion scenarios. By initializing from strong image-pretrained models and leveraging video data for training, we improve state-of-the-art by 1% to 6% on six image and video datasets and four evaluation benchmarks. The implementation is publicly available at our GitHub repository: https://github.com/SMSD75/MoSiC/tree/main |
|
InfoDPCCA: Information-Theoretic Dynamic Probabilistic Canonical Correlation Analysis |
GitHub |
Extracting meaningful latent representations from high-dimensional sequential data is a crucial challenge in machine learning, with applications spanning natural science and engineering. We introduce InfoDPCCA, a dynamic probabilistic Canonical Correlation Analysis (CCA) framework designed to model two interdependent sequences of observations. InfoDPCCA leverages a novel information-theoretic objective to extract a shared latent representation that captures the mutual structure between the data streams and balances representation compression and predictive sufficiency while also learning separate latent components that encode information specific to each sequence. Unlike prior dynamic CCA models, such as DPCCA, our approach explicitly enforces the shared latent space to encode only the mutual information between the sequences, improving interpretability and robustness. We further introduce a two-step training scheme to bridge the gap between information-theoretic representation learning and generative modeling, along with a residual connection mechanism to enhance training stability. Through experiments on synthetic and medical fMRI data, we demonstrate that InfoDPCCA excels as a tool for representation learning. Code of InfoDPCCA is available at https://github.com/marcusstang/InfoDPCCA. |
|
DiscoVLA: Discrepancy Reduction in Vision, Language, and Alignment for Parameter-Efficient Video-Text Retrieval |
GitHub |
The parameter-efficient adaptation of the image-text pretraining model CLIP for video-text retrieval is a prominent area of research. While CLIP is focused on image-level vision-language matching, video-text retrieval demands comprehensive understanding at the video level. Three key discrepancies emerge in the transfer from image-level to video-level: vision, language, and alignment. However, existing methods mainly focus on vision while neglecting language and alignment. In this paper, we propose Discrepancy Reduction in Vision, Language, and Alignment (DiscoVLA), which simultaneously mitigates all three discrepancies. Specifically, we introduce Image-Video Features Fusion to integrate image-level and video-level features, effectively tackling both vision and language discrepancies. Additionally, we generate pseudo image captions to learn fine-grained image-level alignment. To mitigate alignment discrepancies, we propose Image-to-Video Alignment Distillation, which leverages image-level alignment knowledge to enhance video-level alignment. Extensive experiments demonstrate the superiority of our DiscoVLA. In particular, on MSRVTT with CLIP (ViT-B/16), DiscoVLA outperforms previous methods by 1.5% in R@1, reaching a final score of 50.5% R@1. The code is available at https://github.com/LunarShen/DsicoVLA. |
|
Cosmos-Drive-Dreams: Scalable Synthetic Driving Data Generation with World Foundation Models |
GitHub |
Collecting and annotating real-world data for safety-critical physical AI systems, such as Autonomous Vehicle (AV), is time-consuming and costly. It is especially challenging to capture rare edge cases, which play a critical role in training and testing of an AV system. To address this challenge, we introduce the Cosmos-Drive-Dreams - a synthetic data generation (SDG) pipeline that aims to generate challenging scenarios to facilitate downstream tasks such as perception and driving policy training. Powering this pipeline is Cosmos-Drive, a suite of models specialized from NVIDIA Cosmos world foundation model for the driving domain and are capable of controllable, high-fidelity, multi-view, and spatiotemporally consistent driving video generation. We showcase the utility of these models by applying Cosmos-Drive-Dreams to scale the quantity and diversity of driving datasets with high-fidelity and challenging scenarios. Experimentally, we demonstrate that our generated data helps in mitigating long-tail distribution problems and enhances generalization in downstream tasks such as 3D lane detection, 3D object detection and driving policy learning. We open source our pipeline toolkit, dataset and model weights through the NVIDIA's Cosmos platform. Project page: https://research.nvidia.com/labs/toronto-ai/cosmos_drive_dreams |
|
FedRAG: A Framework for Fine-Tuning Retrieval-Augmented Generation Systems |
GitHub |
Retrieval-augmented generation (RAG) systems have been shown to be effective in addressing many of the drawbacks of relying solely on the parametric memory of large language models. Recent work has demonstrated that RAG systems can be improved via fine-tuning of their retriever and generator models. In this work, we introduce FedRAG, a framework for fine-tuning RAG systems across centralized and federated architectures. FedRAG supports state-of-the-art fine-tuning methods, offering a simple and intuitive interface and a seamless conversion from centralized to federated training tasks. FedRAG is also deeply integrated with the modern RAG ecosystem, filling a critical gap in available tools. |
|
Reinforcement Fine-Tuning for Reasoning towards Multi-Step Multi-Source Search in Large Language Models |
GitHub |
Large language models (LLMs) can face factual limitations when responding to time-sensitive queries about recent events that arise after their knowledge thresholds in the training corpus. Existing search-augmented approaches fall into two categories, each with distinct limitations: multi-agent search frameworks incur substantial computational overhead by separating search planning and response synthesis across multiple LLMs, while single-LLM tool-calling methods restrict themselves to sequential planned, single-query searches from sole search sources. We present Reasoning-Search (R-Search), a single-LLM search framework that unifies multi-step planning, multi-source search execution, and answer synthesis within one coherent inference process. Innovatively, it structure the output into four explicitly defined components, including reasoning steps that guide the search process (), a natural-language directed acyclic graph that represents the search plans with respect to diverse sources (), retrieved results from executing the search plans (), and synthesized final answers (). To enable effective generation of these structured outputs, we propose a specialized Reinforcement Fine-Tuning (ReFT) method based on GRPO, together with a multi-component reward function that optimizes LLM's answer correctness, structural validity of the generated DAG, and adherence to the defined output format. Experimental evaluation on FinSearchBench-24, SearchExpertBench-25, and seven Q and A benchmarks demonstrates that R-Search outperforms state-of-the-art methods, while achieving substantial efficiency gains through 70% reduction in context token usage and approximately 50% decrease in execution latency. Code is available at https://github.com/wentao0429/Reasoning-search. |
|
MagCache: Fast Video Generation with Magnitude-Aware Cache |
GitHub, GitHub |
Existing acceleration techniques for video diffusion models often rely on uniform heuristics or time-embedding variants to skip timesteps and reuse cached features. These approaches typically require extensive calibration with curated prompts and risk inconsistent outputs due to prompt-specific overfitting. In this paper, we introduce a novel and robust discovery: a unified magnitude law observed across different models and prompts. Specifically, the magnitude ratio of successive residual outputs decreases monotonically and steadily in most timesteps while rapidly in the last several steps. Leveraging this insight, we introduce a Magnitude-aware Cache (MagCache) that adaptively skips unimportant timesteps using an error modeling mechanism and adaptive caching strategy. Unlike existing methods requiring dozens of curated samples for calibration, MagCache only requires a single sample for calibration. Experimental results show that MagCache achieves 2.1x and 2.68x speedups on Open-Sora and Wan 2.1, respectively, while preserving superior visual fidelity. It significantly outperforms existing methods in LPIPS, SSIM, and PSNR, under comparable computational budgets. |
|
TableDreamer: Progressive and Weakness-guided Data Synthesis from Scratch for Table Instruction Tuning |
GitHub |
Despite the commendable progress of recent LLM-based data synthesis methods, they face two limitations in generating table instruction tuning data. First, they can not thoroughly explore the vast input space of table understanding tasks, leading to limited data diversity. Second, they ignore the weaknesses in table understanding ability of the target LLM and blindly pursue the increase of data quantity, resulting in suboptimal data efficiency. In this paper, we introduce a progressive and weakness-guided data synthesis framework tailored for table instruction tuning, named TableDreamer, to mitigate the above issues. Specifically, we first synthesize diverse tables and related instructions as seed data, and then perform an iterative exploration of the input space under the guidance of the newly identified weakness data, which eventually serve as the final training data for fine-tuning the target LLM. Extensive experiments on 10 tabular benchmarks demonstrate the effectiveness of the proposed framework, which boosts the average accuracy of Llama3.1-8B-instruct by 11.62% (49.07% to 60.69%) with 27K GPT-4o synthetic data and outperforms state-of-the-art data synthesis baselines which use more training data. The code and data is available at https://github.com/SpursGoZmy/TableDreamer |
|
syren-baryon: Analytic emulators for the impact of baryons on the matter power spectrum |
GitHub |
Baryonic physics has a considerable impact on the distribution of matter in our Universe on scales probed by current and future cosmological surveys, acting as a key systematic in such analyses. We seek simple symbolic parametrisations for the impact of baryonic physics on the matter power spectrum for a range of physically motivated models, as a function of wavenumber, redshift, cosmology, and parameters controlling the baryonic feedback. We use symbolic regression to construct analytic approximations for the ratio of the matter power spectrum in the presence of baryons to that without such effects. We obtain separate functions of each of four distinct sub-grid prescriptions of baryonic physics from the CAMELS suite of hydrodynamical simulations (Astrid, IllustrisTNG, SIMBA and Swift-EAGLE) as well as for a baryonification algorithm. We also provide functions which describe the uncertainty on these predictions, due to both the stochastic nature of baryonic physics and the errors on our fits. The error on our approximations to the hydrodynamical simulations is comparable to the sample variance estimated through varying initial conditions, and our baryonification expression has a root mean squared error of better than one percent, although this increases on small scales. These errors are comparable to those of previous numerical emulators for these models. Our expressions are enforced to have the physically correct behaviour on large scales and at high redshift. Due to their analytic form, we are able to directly interpret the impact of varying cosmology and feedback parameters, and we can identify parameters which have little to no effect. Each function is based on a different implementation of baryonic physics, and can therefore be used to discriminate between these models when applied to real data. We provide publicly available code for all symbolic approximations found. |
|
HSG-12M: A Large-Scale Spatial Multigraph Dataset |
GitHub, GitHub |
Existing graph benchmarks assume non-spatial, simple edges, collapsing physically distinct paths into a single link. We introduce HSG-12M, the first large-scale dataset of $\textbf{spatial multigraphs}-$graphs embedded in a metric space where multiple geometrically distinct trajectories between two nodes are retained as separate edges. HSG-12M contains 11.6 million static and 5.1 million dynamic $\textit{Hamiltonian spectral graphs}$ across 1401 characteristic-polynomial classes, derived from 177 TB of spectral potential data. Each graph encodes the full geometry of a 1-D crystal's energy spectrum on the complex plane, producing diverse, physics-grounded topologies that transcend conventional node-coordinate datasets. To enable future extensions, we release $\texttt{Poly2Graph}$: a high-performance, open-source pipeline that maps arbitrary 1-D crystal Hamiltonians to spectral graphs. Benchmarks with popular GNNs expose new challenges in learning from multi-edge geometry at scale. Beyond its practical utility, we show that spectral graphs serve as universal topological fingerprints of polynomials, vectors, and matrices, forging a new algebra-to-graph link. HSG-12M lays the groundwork for geometry-aware graph learning and new opportunities of data-driven scientific discovery in condensed matter physics and beyond. |
|